This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008859 #57 Jun 24 2023 13:24:15 %S A008859 1,2,4,8,16,32,64,127,247,466,848,1486,2510,4096,6476,9949,14893, %T A008859 21778,31180,43796,60460,82160,110056,145499,190051,245506,313912, %U A008859 397594,499178,621616,768212,942649,1149017,1391842,1676116,2007328 %N A008859 a(n) = Sum_{k=0..6} binomial(n,k). %C A008859 a(n) is the maximal number of regions in 6-space formed by n-1 5-dimensional hypercubes. - _Christian Schroeder_, Jan 04 2016 %C A008859 a(n) is the number of binary words of length n matching the regular expression 0*1*0*1*0*1*0*. A000124, A000125, A000127, A006261 count binary words of the form 0*1*0*, 1*0*1*0*, 0*1*0*1*0*, and 1*0*1*0*1*0*, respectively. - _Manfred Scheucher_, Jun 22 2023 %D A008859 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2. %H A008859 Reinhard Zumkeller, <a href="/A008859/b008859.txt">Table of n, a(n) for n = 0..10000</a> %H A008859 Ângela Mestre and José Agapito, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Mestre/mestre2.html">Square Matrices Generated by Sequences of Riordan Arrays</a>, J. Int. Seq., Vol. 22 (2019), Article 19.8.4. %H A008859 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A008859 a(n) = Sum_{k=0..3} binomial(n+1, 2*k). - _Len Smiley_, Oct 20 2001 %F A008859 O.g.f.: (1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)/(1-x)^7. - _R. J. Mathar_, Apr 02 2008 %F A008859 a(n) = a(n-1) + A006261(n-1). - _Christian Schroeder_, Jan 04 2016 %F A008859 a(n) = (n^6 - 9*n^5 + 55*n^4 - 75*n^3 + 304*n^2 + 444*n + 720)/720. - _Gerry Martens_ , May 04 2016 %F A008859 E.g.f.: (720 + 720*x + 360*x^2 + 120*x^3 + 30*x^4 + 6*x^5 + x^6)*exp(x)/6!. - _Ilya Gutkovskiy_, May 04 2016 %p A008859 A008859 := proc(n) %p A008859 add(binomial(n,k),k=0..6) ; %p A008859 end proc: # _R. J. Mathar_, Oct 30 2015 %t A008859 Table[Sum[Binomial[n,k],{k,0,6}],{n,0,40}] (* _Harvey P. Dale_, Jan 16 2012 *) %o A008859 (Haskell) %o A008859 a008859 = sum . take 7 . a007318_row -- _Reinhard Zumkeller_, Nov 24 2012 %o A008859 (PARI) a(n)=sum(k=0,6,binomial(n,k)) \\ _Charles R Greathouse IV_, Sep 24 2015 %o A008859 (Magma) [(&+[Binomial(n,k): k in [0..6]]): n in [0..40]]; // _G. C. Greubel_, Sep 13 2019 %o A008859 (Sage) [sum(binomial(n,k) for k in (0..6)) for n in (0..40)] # _G. C. Greubel_, Sep 13 2019 %o A008859 (GAP) List([0..40], n-> Sum([0..6], k-> Binomial(n,k)) ); # _G. C. Greubel_, Sep 13 2019 %Y A008859 Cf. A008860, A008861, A008862, A008863, A006261, A000127, A007318, A219531. %K A008859 nonn,easy %O A008859 0,2 %A A008859 _N. J. A. Sloane_ and _R. K. Guy_