This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008865 #140 Feb 16 2025 08:32:32 %S A008865 -1,2,7,14,23,34,47,62,79,98,119,142,167,194,223,254,287,322,359,398, %T A008865 439,482,527,574,623,674,727,782,839,898,959,1022,1087,1154,1223,1294, %U A008865 1367,1442,1519,1598,1679,1762,1847,1934,2023,2114,2207,2302,2399,2498 %N A008865 a(n) = n^2 - 2. %C A008865 For n >= 2, least m >= 1 such that f(m, n) = 0 where f(m,n) = Sum_{i=0..m} Sum_{k= 0..i} (-1)^k*(floor(i/n^k) - n*floor(i/n^(k+1))). - _Benoit Cloitre_, May 02 2004 %C A008865 For n >= 3, the a(n)-th row of Pascal's triangle always contains a triple forming an arithmetic progression. - _Lekraj Beedassy_, Jun 03 2004 %C A008865 Let C = 1 + sqrt(2) = 2.414213...; and 1/C = 0.414213... Then a(n) = (n + 1 + 1/C) * (n + 1 - C). Example: a(6) = 34 = (7 + 0.414...) * (7 - 2.414...). - _Gary W. Adamson_, Jul 29 2009 %C A008865 The sequence (n-4)^2-2, n = 7, 8, ... enumerates the number of non-isomorphic sequences of length n, with entries from {1, 2, 3} and no two adjacent entries the same, that minimally contain each of the thirteen rankings of three players (111, 121, 112, 211, 122, 212, 221, 123, 132, 213, 231, 312, 321) as embedded order isomorphic subsequences. By "minimally", we mean that the n-th symbol is necessary for complete inclusion of all thirteen words. See the arXiv paper below for proof. If n = 7, these sequences are 1213121, 1213212, 1231213, 1231231, 1231321, 1232123, and 1232132, and for each case, there are 3! = 6 isomorphs. - _Anant Godbole_, Feb 20 2013 %C A008865 a(n), n >= 0, with a(0) = -2, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 8 for b = 2*n. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - _Wolfdieter Lang_, Aug 15 2013 %C A008865 With a different offset, this is 2*n^2 - (n + 1)^2, which arises in one explanation of why Bertrand's postulate does not automatically prove Legendre's conjecture: as n gets larger, so does the range of numbers that can have primes that satisfy Bertrand's postulate yet do nothing for Legendre's conjecture. - _Alonso del Arte_, Nov 06 2013 %C A008865 x*(x + r*y)^2 + y*(y + r*x)^2 can be written as (x + y)*(x^2 + s*x*y + y^2). For r >= 0, the sequence gives the values of s: in fact, s = (r + 1)^2 - 2. - _Bruno Berselli_, Feb 20 2019 %C A008865 For n >= 2, the continued fraction expansion of sqrt(a(n)) is [n-1; {1, n-2, 1, 2n-2}]. For n=2, this collapses to [1; {2}]. - _Magus K. Chu_, Sep 06 2022 %H A008865 T. D. Noe, <a href="/A008865/b008865.txt">Table of n, a(n) for n = 1..1000</a> %H A008865 Anant Godbole and Martha Liendo, <a href="http://arxiv.org/abs/1302.4668">Waiting time distribution for the emergence of superpatterns</a>, arxiv 1302.4668 [math.PR], 2013. %H A008865 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Near-SquarePrime.html">Near-Square Prime</a>. %H A008865 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A008865 For n > 1: a(n) = A143053(A000290(n)), A143054(a(n)) = A000290(n). - _Reinhard Zumkeller_, Jul 20 2008 %F A008865 G.f.: (x-5*x^2+2*x^3)/(-1+3*x-3*x^2+x^3). - _Klaus Brockhaus_, Oct 17 2008 %F A008865 E.g.f.: (x^2 + x -2)*exp(x) + 2. - _G. C. Greubel_, Aug 19 2017 %F A008865 a(n+1) = A101986(n) - A101986(n-1) = A160805(n) - A160805(n-1). - _Reinhard Zumkeller_, May 26 2009 %F A008865 For n > 1, a(n) = floor(n^5/(n^3 + n + 1)). - _Gary Detlefs_, Feb 10 2010 %F A008865 a(n) = a(n-1) + 2*n - 1 for n > 1, a(1) = -1. - _Vincenzo Librandi_, Nov 18 2010 %F A008865 Right edge of the triangle in A195437: a(n) = A195437(n-2, n-2). - _Reinhard Zumkeller_, Nov 23 2011 %F A008865 a(n)*a(n-1) + 2 = (a(n) - n)^2 = A028552(n-2)^2. - _Bruno Berselli_, Dec 07 2011 %F A008865 a(n+1) = A000096(n) + A000096(n-1) for all n in Z. - _Michael Somos_, Nov 11 2015 %F A008865 From _Amiram Eldar_, Jul 13 2020: (Start) %F A008865 Sum_{n>=1} 1/a(n) = (1 - sqrt(2)*Pi*cot(sqrt(2)*Pi))/4. %F A008865 Sum_{n>=1} (-1)^n/a(n) = (1 - sqrt(2)*Pi*cosec(sqrt(2)*Pi))/4. (End) %F A008865 Assume offset 0. Then a(n) = 2*LaguerreL(2, 1 - n). - _Peter Luschny_, May 09 2021 %F A008865 From _Amiram Eldar_, Feb 05 2024: (Start) %F A008865 Product_{n>=1} (1 - 1/a(n)) = sqrt(2/3)*sin(sqrt(3)*Pi)/sin(sqrt(2)*Pi). %F A008865 Product_{n>=2} (1 + 1/a(n)) = -Pi/(sqrt(2)*sin(sqrt(2)*Pi)). (End) %e A008865 G.f. = -x + 2*x^2 + 7*x^3 + 14*x^4 + 23*x^5 + 34*x^6 + 47*x^7 + 62*x^8 + 79*x^9 + ... %t A008865 Range[50]^2 - 2 (* _Harvey P. Dale_, Mar 14 2011 *) %o A008865 (PARI) {for(n=1, 47, print1(n^2-2, ","))} \\ _Klaus Brockhaus_, Oct 17 2008 %o A008865 (Haskell) %o A008865 a008865 = (subtract 2) . (^ 2) :: Integral t => t -> t %o A008865 a008865_list = scanl (+) (-1) [3, 5 ..] %o A008865 -- _Reinhard Zumkeller_, May 06 2013 %o A008865 (Magma) [n^2 - 2: n in [1..60]]; // _Vincenzo Librandi_, May 01 2014 %Y A008865 Cf. A145067 (Zero followed by partial sums of A008865). %Y A008865 Cf. A000027, A013648. %Y A008865 Cf. A028871 (primes). %Y A008865 Cf. A263766 (partial products). %Y A008865 Cf. A270109. [_Bruno Berselli_, Mar 17 2016] %K A008865 sign,easy %O A008865 1,2 %A A008865 _N. J. A. Sloane_, _R. K. Guy_