A008893 Number of equilateral triangles formed by triples of points taken from a hexagonal chunk of side n in the hexagonal lattice.
0, 8, 66, 258, 710, 1590, 3108, 5516, 9108, 14220, 21230, 30558, 42666, 58058, 77280, 100920, 129608, 164016, 204858, 252890, 308910, 373758, 448316, 533508, 630300, 739700, 862758, 1000566, 1154258, 1325010, 1514040, 1722608, 1952016, 2203608, 2478770
Offset: 0
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
- Gabriele Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2.
- N. J. A. Sloane, Illustration for a(1)=8. [The drawing was made for a different offset, so it says a(2)=8.]
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
A008893[n_] := n*(n + 1)*(7*n*(n + 1) + 2)/4; Array[A008893, 50, 0] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 8, 66, 258, 710}, 50] (* Paolo Xausa, Aug 16 2025 *)
-
Maxima
A008893(n):=n*(n+1)*(7*n^2+7*n+2)/4$ makelist(A008893(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
Formula
a(n) = n*(n+1)*(7*n^2+7*n+2)/4.
G.f.: -2*x*(4*x^2+13*x+4)/(x-1)^5 [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009]
From Elmo R. Oliveira, Aug 15 2025: (Start)
E.g.f.: exp(x)*x*(2 + x)*(16 + 42*x + 7*x^2)/4.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 2*A152041(n). (End)
Extensions
Edited May 29 2012 by N. J. A. Sloane, May 29 2012
Comments