cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008929 Number of increasing sequences of Goldbach type with maximal element n.

This page as a plain text file.
%I A008929 #28 Sep 13 2023 07:21:57
%S A008929 1,1,1,2,3,6,10,20,37,73,139,275,533,1059,2075,4126,8134,16194,32058,
%T A008929 63910,126932,253252,503933,1006056,2004838,4004124,7987149,15957964,
%U A008929 31854676,63660327,127141415,254136782,507750109,1015059238,2028564292,4055812657,8107052520
%N A008929 Number of increasing sequences of Goldbach type with maximal element n.
%C A008929 Equivalent to A066062 and A164047, except for initial term and offset, as shown by J. Marzuola and A. Miller in "Counting numerical sets with no small atoms" (2010). - _Martin Fuller_, Sep 13 2023
%D A008929 M. Torelli, Increasing integer sequences and Goldbach's conjecture, preprint, 1996.
%H A008929 Martin Fuller, <a href="/A008929/b008929.txt">Table of n, a(n) for n = 1..67</a>
%H A008929 S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Monoids of natural numbers</a>
%H A008929 S. R. Finch, <a href="/A066062/a066062.pdf">Monoids of natural numbers</a>, March 17, 2009. [Cached copy, with permission of the author]
%H A008929 J. Marzuola and A. Miller, <a href="https://doi.org/10.1016/j.jcta.2010.03.002">Counting numerical sets with no small atoms</a>, Journal of Combinatorial Theory A, Vol. 117, Issue 6 (2010), 650-667.
%H A008929 Mauro Torelli, <a href="http://dx.doi.org/10.1051/ita:2006017">Increasing integer sequences and Goldbach's conjecture</a>, RAIRO Theoret. Informatics 40 (2) (2006) 107-121.
%H A008929 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>
%Y A008929 Cf. A066062, A164047.
%K A008929 nonn
%O A008929 1,4
%A A008929 Mauro Torelli (torelli(AT)hermes.mc.dsi.unimi.it)
%E A008929 More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 08 2010
%E A008929 a(34) onwards from _Martin Fuller_, Sep 13 2023