This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008932 #37 Apr 30 2025 11:10:38 %S A008932 1,1,2,5,17,65,292,1434,7875,47098,305226,2122983,15752080,124015310, %T A008932 1031857395,9041908204,83186138212,801235247145,8059220936672, %U A008932 84463182889321 %N A008932 Number of increasing sequences of Goldbach type of length n; a(0) = 1 by convention. %C A008932 From _David S. Newman_, Feb 17 2009: (Start) %C A008932 This sequence also arises in the following way. %C A008932 Call a set A of nonnegative integers a basis if every nonnegative integer can be written as the sum of two (not necessarily distinct) elements of A. %C A008932 Call a basis an increasing basis if its elements are arranged in increasing order, a0 < a1 < a2 < ... %C A008932 For example, A126684: 0, 1, 2, 4, 5, 8, 10, 16, 17, 20, 21, 32, 34, 40, ... is an increasing basis. %C A008932 Now consider the set of all initial subsequences of any length {a0, a1, a2,...,an} of all the increasing bases. %C A008932 These can be arranged in lexicographic order, giving: %C A008932 0 %C A008932 0, 1 %C A008932 0, 1, 2 %C A008932 0, 1, 3 %C A008932 0, 1, 2, 3 %C A008932 0, 1, 2, 4 %C A008932 0, 1, 2, 5 %C A008932 0, 1, 3, 4 %C A008932 0, 1, 3, 5 %C A008932 ... %C A008932 How many such subsequences are there of length n? (End) %C A008932 The answer is a(n-1), or a(n) if "length n" ignores the initial zero. A Goldbach sequence is then an increasing basis with each element increased by 1. - [Corrected by _Martin Fuller_, Apr 28 2025] %C A008932 The largest value for each term in any increasing basis is given by A123509. - _Martin Fuller_, Jun 01 2010 %D A008932 M. Torelli, Increasing integer sequences and Goldbach's conjecture, preprint, 1996. %H A008932 M. Torelli, <a href="http://dx.doi.org/10.1051/ita:2006017">Increasing integer sequences and Goldbach's conjecture</a>, RAIRO - Theoretical Informatics and Applications, vol.40, no.02 (April 2006), pp.107-121. %H A008932 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %o A008932 (PARI) A008932(n,pol=0)= { local(a=0, i, pol2); %o A008932 !n && return(1); %o A008932 i = #pol; %o A008932 pol2 = pol^2; %o A008932 for (i=#pol, #pol2+1, %o A008932 a += A008932(n-1, pol+'x^i); %o A008932 !polcoeff(pol2,i) && break;); %o A008932 a } \\ _Martin Fuller_, Jun 01 2010 %Y A008932 Cf. A123509. %K A008932 nonn,more %O A008932 0,3 %A A008932 Mauro Torelli (torelli(AT)hermes.mc.dsi.unimi.it) %E A008932 a(9)-a(14) from _Martin Fuller_, Feb 18 2009 %E A008932 Edited by _N. J. A. Sloane_, Mar 12 2009 %E A008932 a(15)-a(16) from _Sean A. Irvine_, Apr 19 2018 %E A008932 a(17)-a(19) from _Martin Fuller_, Apr 30 2025