cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008932 Number of increasing sequences of Goldbach type of length n; a(0) = 1 by convention.

This page as a plain text file.
%I A008932 #37 Apr 30 2025 11:10:38
%S A008932 1,1,2,5,17,65,292,1434,7875,47098,305226,2122983,15752080,124015310,
%T A008932 1031857395,9041908204,83186138212,801235247145,8059220936672,
%U A008932 84463182889321
%N A008932 Number of increasing sequences of Goldbach type of length n; a(0) = 1 by convention.
%C A008932 From _David S. Newman_, Feb 17 2009: (Start)
%C A008932 This sequence also arises in the following way.
%C A008932 Call a set A of nonnegative integers a basis if every nonnegative integer can be written as the sum of two (not necessarily distinct) elements of A.
%C A008932 Call a basis an increasing basis if its elements are arranged in increasing order, a0 < a1 < a2 < ...
%C A008932 For example, A126684: 0, 1, 2, 4, 5, 8, 10, 16, 17, 20, 21, 32, 34, 40, ... is an increasing basis.
%C A008932 Now consider the set of all initial subsequences of any length {a0, a1, a2,...,an} of all the increasing bases.
%C A008932 These can be arranged in lexicographic order, giving:
%C A008932   0
%C A008932   0, 1
%C A008932   0, 1, 2
%C A008932   0, 1, 3
%C A008932   0, 1, 2, 3
%C A008932   0, 1, 2, 4
%C A008932   0, 1, 2, 5
%C A008932   0, 1, 3, 4
%C A008932   0, 1, 3, 5
%C A008932   ...
%C A008932 How many such subsequences are there of length n? (End)
%C A008932 The answer is a(n-1), or a(n) if "length n" ignores the initial zero. A Goldbach sequence is then an increasing basis with each element increased by 1. - [Corrected by _Martin Fuller_, Apr 28 2025]
%C A008932 The largest value for each term in any increasing basis is given by A123509. - _Martin Fuller_, Jun 01 2010
%D A008932 M. Torelli, Increasing integer sequences and Goldbach's conjecture, preprint, 1996.
%H A008932 M. Torelli, <a href="http://dx.doi.org/10.1051/ita:2006017">Increasing integer sequences and Goldbach's conjecture</a>, RAIRO - Theoretical Informatics and Applications, vol.40, no.02 (April 2006), pp.107-121.
%H A008932 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>
%o A008932 (PARI) A008932(n,pol=0)= { local(a=0, i, pol2);
%o A008932 !n && return(1);
%o A008932 i = #pol;
%o A008932 pol2 = pol^2;
%o A008932 for (i=#pol, #pol2+1,
%o A008932 a += A008932(n-1, pol+'x^i);
%o A008932 !polcoeff(pol2,i) && break;);
%o A008932 a } \\ _Martin Fuller_, Jun 01 2010
%Y A008932 Cf. A123509.
%K A008932 nonn,more
%O A008932 0,3
%A A008932 Mauro Torelli (torelli(AT)hermes.mc.dsi.unimi.it)
%E A008932 a(9)-a(14) from _Martin Fuller_, Feb 18 2009
%E A008932 Edited by _N. J. A. Sloane_, Mar 12 2009
%E A008932 a(15)-a(16) from _Sean A. Irvine_, Apr 19 2018
%E A008932 a(17)-a(19) from _Martin Fuller_, Apr 30 2025