This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008950 #35 Jul 08 2025 01:25:28 %S A008950 4,8,24,90,114,524,888,1130,1328,9552,15684,19610,31398,155922,360654, %T A008950 370262,492114,1349534,1357202,2010734,4652354,17051708,20831324, %U A008950 47326694,122164748,189695660,191912784,387096134,436273010,1294268492 %N A008950 Increasing length runs of consecutive composite numbers (starting points). %C A008950 There are runs of n consecutive composite numbers for every n. For example, the n numbers (n+1)!+2 ... (n+1)!+n+1 are composite. Such a run may start of course earlier than this. - _Joerg Arndt_, May 01 2013 %H A008950 Jens Kruse Andersen, <a href="/A008950/b008950.txt">Table of n, a(n) for n=1..74</a> (using A002386) %H A008950 Jens Kruse Andersen, <a href="http://primerecords.dk/primegaps/gaps20.htm">The Top-20 Prime Gaps</a> %H A008950 Jens Kruse Andersen, <a href="http://primerecords.dk/primegaps/megagap2.htm">New record prime gap</a> %H A008950 Jens Kruse Andersen, <a href="http://primerecords.dk/primegaps/maximal.htm">Maximal gaps</a> %H A008950 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeGaps.html">Prime Gaps.</a> %H A008950 J. Young and A. Potler, <a href="http://dx.doi.org/10.1090/S0025-5718-1989-0947470-1">First occurrence prime gaps</a>, Math. Comp., 52 (1989), 221-224. %F A008950 a(n) = A002386(n+1)+1. %F A008950 a(n) <= (n+1)! + 2. [_Joerg Arndt_, May 01 2013] %t A008950 maxGap = 1; Reap[Do[p = Prime[n]; gap = Prime[n+1] - p; If[gap > maxGap, Print[p+1]; Sow[p+1]; maxGap = gap], {n, 2, 10^8 }]][[2, 1]] (* _Jean-François Alcover_, Jun 15 2012 *) %Y A008950 Cf. A008995, A008996. %K A008950 nonn,nice %O A008950 1,1 %A A008950 Mark Cramer (m.cramer(AT)qut.edu.au). Computed by Dennis Yelle (dennis(AT)netcom.com)