This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A008957 #52 Dec 29 2024 20:25:07 %S A008957 1,1,1,1,5,1,1,14,21,1,1,30,147,85,1,1,55,627,1408,341,1,1,91,2002, %T A008957 11440,13013,1365,1,1,140,5278,61490,196053,118482,5461,1,1,204,12138, %U A008957 251498,1733303,3255330,1071799,21845,1,1,285,25194,846260,10787231 %N A008957 Triangle of central factorial numbers T(2*n,2*n-2*k), k >= 0, n >= 1 (in Riordan's notation). %C A008957 D. E. Knuth [1992] on page 10 gives the formula Sum n^(2m-1) = Sum_{k=1..m} (2k-1)! T(2m,2k) binomial(n+k, 2k) where T(m, k) is the central factorial number of the second kind. - _Michael Somos_, May 08 2018 %D A008957 J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217, Table 6.2(a). %D A008957 R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8. %H A008957 Reinhard Zumkeller, <a href="/A008957/b008957.txt">Rows n = 1..100 of triangle, flattened</a> %H A008957 F. Alayont and N. Krzywonos, <a href="http://faculty.gvsu.edu/alayontf/notes/rook_polynomials_higher_dimensions_preprint.pdf">Rook Polynomials in Three and Higher Dimensions</a>, 2012. [From _N. J. A. Sloane_, Jan 02 2013] %H A008957 D. Dumont, <a href="http://dx.doi.org/10.1215/S0012-7094-74-04134-9">Interprétations combinatoires des nombres de Genocchi</a>, Duke Math. J., 41 (1974), 305-318. %H A008957 D. E. Knuth, <a href="https://arxiv.org/abs/math/9207222">Johann Faulhaber and Sums of Powers</a>, arXiv:math/9207222, Jul 1992. See bottom of page 10. [From _Michael Somos_, May 08 2018] %H A008957 Petro Kolosov, <a href="https://kolosovpetro.github.io/pdf/PolynomialIdentitiesInvolvingCentralFactorialNumbers.pdf">Polynomial identities involving central factorial numbers</a>, GitHub, 2024. See p. 6. %F A008957 From _Michael Somos_, May 08 2018: (Start) %F A008957 T(n, k) = T(n-1, k-1) + k^2 * T(n-1, k), where T(n, n) = T(n, 1) = 1. %F A008957 E.g.f.: x^2 * (cosh(sinh(y*x/2) / (x/2)) - 1) = (1*x^2)*y^2/2! + (1*x^2 + 1*x^4)*y^4/4! + (1*x^2 + 5*x^4 + 1*x^6)*y^6/6! + (1*x^2 + 14*x^4 + 21*x^6 + 1*x^8)*y^8/8! + ... (End) %e A008957 The triangle starts: %e A008957 1; %e A008957 1, 1; %e A008957 1, 5, 1; %e A008957 1, 14, 21, 1; %e A008957 1, 30, 147, 85, 1; %e A008957 1, 55, 627, 1408, 341, 1; %e A008957 1, 91, 2002, 11440, 13013, 1365, 1; %p A008957 A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end; # Gives rows of triangle in reversed order %t A008957 t[n_, n_] = t[n_, 1] = 1; %t A008957 t[n_, k_] := t[n-1, k-1] + k^2 t[n-1, k]; %t A008957 Flatten[Table[t[n, k], {n, 1, 10}, {k, n, 1, -1}]][[1 ;; 50]] (* _Jean-François Alcover_, Jun 16 2011 *) %o A008957 (Haskell) %o A008957 a008957 n k = a008957_tabl !! (n-1) (k-1) %o A008957 a008957_row n = a008957_tabl !! (n-1) %o A008957 a008957_tabl = map reverse a036969_tabl %o A008957 -- _Reinhard Zumkeller_, Feb 18 2013 %o A008957 (PARI) {T(n, k) = if( n<1 || k>n, 0, n==k || k==1, 1, T(n-1, k-1) + k^2 * T(n-1, k))}; \\ _Michael Somos_, May 08 2018 %o A008957 (Sage) %o A008957 def A008957(n, k): %o A008957 m = n - k %o A008957 return 2*sum((-1)^(j+m)*(j+1)^(2*n)/(factorial(j+m+2)*factorial(m-j)) for j in (0..m)) %o A008957 for n in (1..7): print([A008957(n, k) for k in (1..n)]) # _Peter Luschny_, May 10 2018 %Y A008957 Row reversed version of A036969. (0,0)-based version: A269945. %Y A008957 Cf. A008955. %K A008957 nonn,nice,easy,tabl %O A008957 1,5 %A A008957 _N. J. A. Sloane_ %E A008957 More terms from _Vladeta Jovovic_, Apr 16 2000