cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008968 Triangle of distribution of rank sums: Wilcoxon's statistic.

This page as a plain text file.
%I A008968 #16 Dec 16 2021 22:35:39
%S A008968 1,1,2,3,3,3,3,2,1,1,1,1,2,3,4,4,5,4,4,3,2,1,1,1,1,2,3,4,5,6,6,6,6,5,
%T A008968 4,3,2,1,1,1,1,2,3,4,5,7,7,8,8,8,7,7,5,4,3,2,1,1,1,1,2,3,4,5,7,8,9,10,
%U A008968 10,10,10,9,8,7,5,4,3,2,1,1,1,1,2,3,4,5,7,8,10,11,12,12,13,12
%N A008968 Triangle of distribution of rank sums: Wilcoxon's statistic.
%D A008968 F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 237.
%F A008968 Let f(r) = Product( (x^i-x^(r+1))/(1-x^i), i = 1..r-3) / x^((r-2)*(r-3)/2); then expanding f(r) in powers of x and taking coefficients gives the successive rows of this triangle (with a different offset).
%e A008968 Rows begin:
%e A008968 {1, 1, 2, 3, 3, 3, 3, 2, 1, 1},
%e A008968 {1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1},
%e A008968 {1, 1, 2, 3, 4, 5, 6, 6, 6, 6, 5, 4, 3, 2, 1, 1},
%e A008968 {1, 1, 2, 3, 4, 5, 7, 7, 8, 8, 8, 7, 7, 5, 4, 3, 2, 1, 1},
%e A008968 ...
%t A008968 f[r_] := Product[(x^i - x^(r+1))/(1 - x^i), {i, 1, r-3}]/x^((r-2)*(r-3)/2);
%t A008968 row[r_] := CoefficientList[ Series[f[r], {x, 0, 3r+1}], x];
%t A008968 Table[row[r], {r, 6, 12}] // Flatten (* _Jean-François Alcover_, Nov 30 2012 *)
%K A008968 tabf,nonn,nice
%O A008968 6,3
%A A008968 _N. J. A. Sloane_