cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008983 Number of immersions of the unoriented circle into the unoriented plane with n double points.

This page as a plain text file.
%I A008983 #29 Oct 14 2024 11:22:38
%S A008983 1,2,5,20,82,435,2645,18489,141326,1153052,9819315,86305315,776868505
%N A008983 Number of immersions of the unoriented circle into the unoriented plane with n double points.
%D A008983 V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994, p. 16.
%H A008983 S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Knots, links and tangles</a>
%H A008983 S. R. Finch, <a href="/A002863/a002863_4.pdf">Knots, links and tangles</a>, Aug 08 2003. [Cached copy, with permission of the author]
%H A008983 S. M. Gusein-Zade and F. S. Duzhin, <a href="https://doi.org/10.4213/rm48">On the number of topological types of plane curves</a> (Russian), Uspekhi Mat. Nauk 53 (1998), no. 3(321), 197-198. <a href="https://doi.org/10.1070/RM1998v053n03ABEH000048">English translation</a>: Russian Mathematical Surveys 53 (1998) 626-627. <a href="https://www.pdmi.ras.ru/~arnsem/dataprog/">Related program and data</a>.
%H A008983 Christoph Lamm, <a href="https://arxiv.org/abs/2410.06601">The enumeration of doubly symmetric diagrams for strongly positive amphicheiral knots</a>, arXiv:2410.06601 [math.GT], 2024. See p. 14.
%Y A008983 Cf. A008980, A008981, A008982, A008984, A008985, A054993.
%Y A008983 Cf. A008989 (immersions into sphere), A118814 (tree-like immersions).
%K A008983 nonn,nice,more
%O A008983 0,2
%A A008983 _N. J. A. Sloane_
%E A008983 Additional comments from _Sergei Duzhin_, Nov 11 2000
%E A008983 a(11)-a(12) from _Sean A. Irvine_, Apr 19 2018