This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A009022 #36 Apr 16 2025 09:01:43 %S A009022 1,0,-1,3,-2,-20,74,98,-1532,960,41324,-105732,-1595912,7998640, %T A009022 85401224,-705417112,-6026865392,76352075520,537223559024, %U A009022 -10130428275792,-58185728893472,1628892022801600,7352490891960224,-313251680404802272,-1026222973696521152 %N A009022 Expansion of e.g.f. cos(log(1+tanh(x))). %C A009022 Related to A102573: letting T(q,r) be the coefficient of n^(r+1) in the polynomial 2^(q-n)/n times Sum_{k=0..n} binomial(n,k)*k^q, then A009022(x) equals (-1)^(x+1) times the imaginary part of Sum_{k=0..x-1} T(x,k)*i^k, where i is the imaginary unit. See Mathematica code below. - _John M. Campbell_, Nov 17 2011 %H A009022 Vincenzo Librandi, <a href="/A009022/b009022.txt">Table of n, a(n) for n = 0..200</a> %F A009022 a(n) = Sum_{m=0..n/2} (-1)^m*Sum_{r=2*m..n} (Stirling1(r,2*m)*Sum_{k=r..n} binomial(k-1,r-1)*k!*2^(n-k)*Stirling2(n,k)*(-1)^(r+k))/r!, n > 0, a(0)=1. - _Vladimir Kruchinin_, Jun 21 2011 %t A009022 Join[{1}, Cos[Log[1 + Tanh[x]]]; %t A009022 poly[q_] := 2^(q - n)/n FunctionExpand[Sum[Binomial[n, k] k^q, {k, 0, n}]]; T[q_, r_] := First[Take[CoefficientList[poly[q], n], {r + 1, r + 1}]]; Table[Im[Sum[T[x, k] I^k, {k, 0, x - 1}]] (-1)^(x + 1), {x, 1, 23}]] (* _John M. Campbell_, Nov 17 2011 *) %t A009022 With[{nn = 30}, Take[CoefficientList[Series[Cos[Log[1 + Tanh[x]]], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 1}]] (* _Vincenzo Librandi_, Feb 09 2014 *) %o A009022 (Maxima) %o A009022 a(n):=if n=0 then 1 else sum((-1)^(m)*sum((stirling1(r,2*m)*sum(binomial(k-1,r-1)*k!*2^(n-k)*stirling2(n,k)*(-1)^(r+k),k,r,n))/r!,r,2*m,n),m,0,n/2); /* _Vladimir Kruchinin_, Jun 21 2011 */ %o A009022 (PARI) my(x='x+O('x^30)); Vec(serlaplace(cos(log(1+tanh(x))))) \\ _G. C. Greubel_, Jul 22 2018 %o A009022 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cos(Log(1+Tanh(x))))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Jul 22 2018 %K A009022 sign,easy %O A009022 0,4 %A A009022 _R. H. Hardin_ %E A009022 Extended with signs by _Olivier Gérard_, Mar 15 1997 %E A009022 Adapted Campbell's Mathematica program for offset by _Vincenzo Librandi_, Feb 09 2014