This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A009192 #17 Jul 28 2018 16:23:45 %S A009192 1,1,0,-3,-6,15,75,84,-1820,-123,-10725,475816,-3554562,32763107, %T A009192 -501958275,6877337128,-95130710792,1486984480729,-24736452203529, %U A009192 430314112493264,-7930867848273070,154362838472661367,-3154456665148212743 %N A009192 E.g.f. exp(log(1+x)*cos(x)). %F A009192 a(n)=sum(k=0..n, (sum(m=1..(n-k)/2, binomial(n,2*m)*(stirling1(n-2*m,k)*(sum(i=0..(k-1)/2, (k-2*i)^(2*m)*binomial(k,i)))*(-1)^(m))))/2^(k-1)+(stirling1(n,k))). - _Vladimir Kruchinin_, Jun 29 2011 %F A009192 E.g.f.: (1+x)^cos(x). - _Vaclav Kotesovec_, Jul 28 2018 %F A009192 a(n) ~ (-1)^n * n! / (Gamma(-cos(1)) * n^(1 + cos(1))). - _Vaclav Kotesovec_, Jul 28 2018 %o A009192 (Maxima) %o A009192 a(n):=sum((sum(binomial(n,2*m)*(stirling1(n-2*m,k)*(sum((k-2*i)^(2*m)*binomial(k,i),i,0,(k-1)/2))*(-1)^(m)),m,1,(n-k)/2))/2^(k-1)+(stirling1(n,k)),k,0,n); /* _Vladimir Kruchinin_, Jun 29 2011 */ %K A009192 sign,easy %O A009192 0,4 %A A009192 _R. H. Hardin_ %E A009192 Extended with signs by _Olivier Gérard_, Mar 15 1997