cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009321 E.g.f. log(1 + log(1+x)*exp(x)).

This page as a plain text file.
%I A009321 #17 Apr 01 2017 14:02:45
%S A009321 0,1,0,1,-5,23,-129,894,-7202,65365,-661763,7412348,-91009060,
%T A009321 1214988851,-17522921545,271538506004,-4499710415184,79404970485241,
%U A009321 -1486680068450391,29435486083635796,-614519419914446388
%N A009321 E.g.f. log(1 + log(1+x)*exp(x)).
%F A009321 a(n)=sum(k=1..n, ((-1)^(k-1)*(k-1)!*sum(i=0..n-k, binomial(n,i)*(k^i*stirling1(n-i,k))))). - _Vladimir Kruchinin_, Jun 14 2011
%F A009321 a(n) ~ (n-1)! * (-1)^(n+1) / (1-exp(-r))^n, where r = 2.5051123308583601790988703653235907822189... is the root of the equation exp(-1 + exp(-r))*r = 1. - _Vaclav Kotesovec_, Jan 24 2015
%t A009321 CoefficientList[Series[Log[1 + E^x*Log[1 + x]], {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Jan 24 2015 *)
%o A009321 (Maxima)
%o A009321 a(n):=sum(((-1)^(k-1)*(k-1)!*sum(binomial(n,i)*(k^i*stirling1(n-i,k)),i,0,n-k)),k,1,n); /* _Vladimir Kruchinin_, Jun 14 2011 */
%K A009321 sign,easy
%O A009321 0,5
%A A009321 _R. H. Hardin_
%E A009321 Extended with signs by _Olivier Gérard_, Mar 15 1997