cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009341 Expansion of e.g.f. log(1 + sin(x)*x), even powers only.

This page as a plain text file.
%I A009341 #25 Jan 28 2018 02:27:01
%S A009341 0,2,-16,366,-17704,1467370,-185815884,33370050910,-8067253019536,
%T A009341 2526062494781394,-994534162338738580,480859837194669214150,
%U A009341 -280103496938395910686680,193472520727526106582807226
%N A009341 Expansion of e.g.f. log(1 + sin(x)*x), even powers only.
%H A009341 Vincenzo Librandi, <a href="/A009341/b009341.txt">Table of n, a(n) for n = 0..100</a>
%F A009341 a(n) = 2*sum(k=1..2*n-1, binomial(2*n,k)*(k-1)!*(sum(i=0..k/2, (2*i-k)^(2*n-k)*binomial(k,i)*(-1)^(n-i+k-1)))/(2^k)). - _Vladimir Kruchinin_, Jun 28 2011
%F A009341 a(n) ~ (-1)^(n+1) * (2*n)! / (n*r^(2*n)), where r = 0.9320200293523439... (see A133867) is the root of the equation r*sinh(r)=1. - _Vaclav Kotesovec_, Apr 20 2014
%t A009341 With[{nn=30},Take[CoefficientList[Series[Log[1+Sin[x]x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* _Harvey P. Dale_, Nov 27 2013 *)
%o A009341 (Maxima)
%o A009341 a(n):=2*sum(binomial(2*n,k)*(k-1)!*(sum((2*i-k)^(2*n-k)*binomial(k,i)*(-1)^(n-i+k-1),i,0,k/2))/(2^k),k,1,2*n-1); /* _Vladimir Kruchinin_, Jun 28 2011 */
%Y A009341 Cf. A133867.
%K A009341 sign
%O A009341 0,2
%A A009341 _R. H. Hardin_
%E A009341 Extended with signs by _Olivier Gérard_, Mar 15 1997
%E A009341 Previous Mathematica program replaced by _Harvey P. Dale_, Nov 27 2013