This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A009444 #46 Jan 17 2020 17:44:53 %S A009444 0,1,-3,11,-58,409,-3606,38149,-470856,6641793,-105398650,1858413061, %T A009444 -36044759796,762659322385,-17481598316742,431535346662645, %U A009444 -11413394655983536,321989729198400385,-9651573930139850610 %N A009444 E.g.f. log(1 + x*exp(-x)). %C A009444 abs(a(n)) is the number of connected functions f:{1,2,...,n}->{1,2,...,n} such that every element is mapped into a recurrent element. Cf. A006153. - _Geoffrey Critzer_, May 24 2012 %H A009444 G. C. Greubel, <a href="/A009444/b009444.txt">Table of n, a(n) for n = 0..400</a> %H A009444 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=125">Encyclopedia of Combinatorial Structures 125</a> %F A009444 abs(a(n)) is asymptotic to (n-1)!/LambertW(1)^n. - _Vladeta Jovovic_, Jul 12 2007 %F A009444 Sequence of absolute values has e.g.f. log(1/(1-x*exp(x))). - _Joerg Arndt_, Apr 30 2011 %F A009444 a(n) = (-1)^(n+1)*n!*sum(m=1..n, m^(n-m-1)/(n-m)!). - _Vladimir Kruchinin_, Oct 08 2011 %F A009444 a(n) = (-1)^(n + 1) * n + Sum_{k=1..n-1} (-1)^(n - k) * binomial(n-1,k-1) * (n - k) * a(k). - _Ilya Gutkovskiy_, Jan 17 2020 %t A009444 With[{nmax = 40}, CoefficientList[Series[Log[1 + x*Exp[-x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* _G. C. Greubel_, Nov 22 2017 *) %o A009444 (PARI) x='x+O('x^66); /* that many terms */ %o A009444 egf=1/(1+x/exp(x)); /* = 1 - x + 2*x^2 - 7/2*x^3 + 37/6*x^4 - 87/8*x^5 +... */ %o A009444 Vec(serlaplace(egf)) /* show terms */ /* _Joerg Arndt_, Apr 30 2011 */ %o A009444 (Maxima) %o A009444 a(n):=(-1)^(n+1)*n!*sum(m^(n-m-1)/(n-m)!,m,1,n); /* _Vladimir Kruchinin_, Oct 08 2011 */ %o A009444 (Sage) %o A009444 A009444 = lambda n: (-1)^(n+1)*factorial(n)*sum(m^(n-m-1)/factorial(n-m) for m in (1..n)) %o A009444 [A009444(n) for n in (0..9)] # _Peter Luschny_, Jan 18 2016 %Y A009444 Cf. A006153, A009306, A305990. %K A009444 sign,easy %O A009444 0,3 %A A009444 _R. H. Hardin_ %E A009444 Extended with signs by _Olivier Gérard_, Mar 15 1997 %E A009444 Definition corrected by _Joerg Arndt_, Apr 30 2011