This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A009613 #19 Jan 27 2018 06:29:40 %S A009613 0,2,16,392,21376,1875872,227105536,35750690432,7110343684096, %T A009613 1750588208886272,523940264885702656,187423773435078920192, %U A009613 78905518064423548911616,38568578386644134655598592 %N A009613 Expansion of e.g.f. sinh(tan(x)*tan(x)) (even powers only). %F A009613 a(n) = sum(m=0..n, 1/(2*m+1)!*sum(j=4*m+2..2*n, binomial(j-1,4*m+1)*j!*2^(2*n-j)*(-1)^(n+1+j)*stirling2(2*n,j))). - _Vladimir Kruchinin_, Jun 11 2011 %e A009613 sinh(tan(x)*tan(x)) = 2/2!*x^2 + 16/4!*x^4 + 392/6!*x^6 + 21376/8!*x^8 + ... %t A009613 With[{nn=30},Take[CoefficientList[Series[Sinh[Tan[x]^2],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* _Harvey P. Dale_, Jun 12 2016 *) %o A009613 (Maxima) %o A009613 a(n):=sum(1/(2*m+1)!*sum(binomial(j-1,4*m+1)*j!*2^(2*n-j)*(-1)^(n+1+j)*stirling2(2*n,j),j,4*m+2,2*n),m,0,n); /* _Vladimir Kruchinin_, Jun 11 2011 */ %K A009613 nonn %O A009613 0,2 %A A009613 _R. H. Hardin_ %E A009613 Extended and signs tested by _Olivier Gérard_, Mar 15 1997