This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A009634 #29 Sep 06 2017 17:47:39 %S A009634 1,5,81,3429,238273,25669093,3923627345,807194393477,215176572950017, %T A009634 72120516857475141,29686285367774651089,14721686852776234894885, %U A009634 8656857857596485141973441,5955926696414663185424979749 %N A009634 E.g.f. tan(x*cosh(x)), zeros omitted. %F A009634 a(n) = b(2*n+1) where b(n) = Sum_{k=1..n} (binomial(n,k)*(((-1)^(k-1)+1)*(Sum_{i=0..k} (k-2*i)^(n-k)*binomial(k,i))*Sum_{j=1..k} j!*2^(k-j-1)*(-1)^((k+1)/2+j)*stirling2(k,j))/(2^k)). - _Vladimir Kruchinin_, Apr 21 2011 %t A009634 With[{nn=30},Take[CoefficientList[Series[Tan[Cosh[x]*x],{x,0,nn}],x] Range[0,nn-1]!,{2,-1,2}]] (* _Harvey P. Dale_, Sep 06 2017 *) %o A009634 (Maxima) %o A009634 a(n):=b(2*n+1); %o A009634 b(n):=sum(binomial(n,k)*(((-1)^(k-1)+1)*(sum((k-2*i)^(n-k)*binomial(k,i),i,0,k))*sum(j!*2^(k-j-1)*(-1)^((k+1)/2+j)*stirling2(k,j),j,1,k))/(2^k),k,1,n); /* _Vladimir Kruchinin_, Apr 21 2011 */ %o A009634 (PARI) %o A009634 a(n)={n=2*n+1;sum(k=1,n, binomial(n,k)*(((-1)^(k-1)+1)*(sum(i=0,k, (k-2*i)^(n-k)*binomial(k,i)))*sum(j=1,k, j!*2^(k-j-1)*(-1)^((k+1)/2+j)* stirling(k,j,2)))/(2^k));} /* Kruchinin's formula; _Joerg Arndt_, Apr 22 2011 */ %K A009634 nonn %O A009634 0,2 %A A009634 _R. H. Hardin_ %E A009634 Extended and signs tested by _Olivier Gérard_, Mar 15 1997 %E A009634 Name corrected by _Joerg Arndt_, Apr 23 2011 %E A009634 Previous Mathematica program replaced by _Harvey P. Dale_, Sep 06 2017