This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A009679 #26 Mar 18 2022 00:10:26 %S A009679 1,2,4,18,60,252,1860,9552,59616,565920,4051872,33805440,465239808, %T A009679 4294865664,35413136640,768372168960,8757710173440,79772814777600, %U A009679 1986906367584000,22082635812268800,280886415019776000,7683780010315046400 %N A009679 Number of partitions of {1, ..., 2n} into coprime pairs. %H A009679 Seiichi Manyama, <a href="/A009679/b009679.txt">Table of n, a(n) for n = 1..30</a> calculated by Herman Jamke's code. %H A009679 Carl Pomerance, <a href="https://arxiv.org/abs/2203.03085">Coprime permutations</a>, arXiv:2203.03085 [math.NT], 2022. %F A009679 a(n) = sqrt(A005326(2n)). - _T. D. Noe_, Feb 10 2007 %F A009679 a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether gcd(2i,2j-1) is 1 or >1, respectively. - _T. D. Noe_, Feb 11 2007 %o A009679 (PARI) permRWNb(a)=n=matsize(a)[1]; if(n==1,return(a[1,1])); sg=1; nc=0; in=vectorv(n); x=in;x=a[,n]-sum(j=1,n,a[,j])/2; p=prod(i=1,n,x[i]); for(k=1,2^(n-1)-1,sg=-sg; j=valuation(k,2)+1;z=1-2*in[j]; in[j]+=z; nc+=z; x+=z*a[,j]; p+=prod(i=1,n,x[i],sg)); return(2*(2*(n%2)-1)*p) %o A009679 for(n=1,26,a=matrix(n,n,i,j,gcd(2*i,2*j-1)==1);print1(permRWNb(a)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007 %Y A009679 Cf. A001147 for the number of partitions (pairings) in unrestricted pairs. %K A009679 nonn %O A009679 1,2 %A A009679 _David W. Wilson_ %E A009679 More terms from _T. D. Noe_, Feb 10 2007 %E A009679 More terms from _T. D. Noe_, Feb 11 2007