This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A009747 #24 Apr 12 2017 23:09:13 %S A009747 0,2,12,142,3192,116282,6219972,458790022,44625674352,5534347077362, %T A009747 852334810990332,159592488559874302,35703580441464231912, %U A009747 9405575479317650316842,2881823738166957609703092,1016124476854507687644180982,408525180980254462140262747872,185768439922172208338308590282722 %N A009747 E.g.f. tan(x)*sinh(x) (even powers only). %H A009747 G. C. Greubel, <a href="/A009747/b009747.txt">Table of n, a(n) for n = 0..240</a> %H A009747 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a> %F A009747 a(n) ~ (2*n)! * 4^(n+1) * sinh(Pi/2) / Pi^(2*n+1). - _Vaclav Kotesovec_, Jan 24 2015 %t A009747 nn = 20; Table[(CoefficientList[Series[Sinh[x]*Tan[x], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* _Vaclav Kotesovec_, Jan 24 2015 *) %o A009747 (Sage) # Generalized algorithm of L. Seidel (1877) %o A009747 def A009747_list(n) : %o A009747 R = []; A = {-1:0, 0:0} %o A009747 k = 0; e = 1 %o A009747 for i in range(2*n) : %o A009747 Am = 1 if e == -1 else 0 %o A009747 A[k + e] = 0 %o A009747 e = -e %o A009747 for j in (0..i) : %o A009747 Am += A[k] %o A009747 A[k] = Am %o A009747 k += e %o A009747 if e == -1 : R.append(A[-i//2]) %o A009747 return R %o A009747 A009747_list(10) # _Peter Luschny_, Jun 02 2012 %o A009747 (PARI) x='x+O('x^66); v=Vec(serlaplace(tan(x)*sinh(x))); concat([0],vector(#v\2,n,v[2*n-1])) \\ _Joerg Arndt_, Apr 26 2013 %Y A009747 Bisection of A009739 and (apparently) A062161. %K A009747 nonn %O A009747 0,2 %A A009747 _R. H. Hardin_ %E A009747 Extended and signs tested by _Olivier Gérard_, Mar 15 1997