This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A009963 #60 Apr 13 2022 01:14:45 %S A009963 1,1,1,1,2,1,1,6,6,1,1,24,72,24,1,1,120,1440,1440,120,1,1,720,43200, %T A009963 172800,43200,720,1,1,5040,1814400,36288000,36288000,1814400,5040,1,1, %U A009963 40320,101606400,12192768000,60963840000,12192768000,101606400,40320,1 %N A009963 Triangle of numbers n!(n-1)!...(n-k+1)!/(1!2!...k!). %C A009963 Product of all matrix elements of n X k matrix M(i,j) = i+j (i=1..n-k, j=1..k). - _Peter Luschny_, Nov 26 2012 %C A009963 These are the generalized binomial coefficients associated to the sequence A000178. - _Tom Edgar_, Feb 13 2014 %H A009963 G. C. Greubel, <a href="/A009963/b009963.txt">Rows n = 0..50 of the triangle, flattened</a> %F A009963 T(n,k) = T(n-1,k-1)*A008279(n,n-k) = A000178(n)/(A000178(k)*A000178(n-k)) i.e., a "supercombination" of "superfactorials". - _Henry Bottomley_, May 22 2002 %F A009963 Equals ConvOffsStoT transform of the factorials starting (1, 2, 6, 24, ...); e.g., ConvOffs transform of (1, 2, 6, 24) = (1, 24, 72, 24, 1). Note that A090441 = ConvOffsStoT transform of the factorials, A000142. - _Gary W. Adamson_, Apr 21 2008 %F A009963 Asymptotic: T(n,k) ~ exp((3/2)*k^2 - zeta'(-1) + 3/4 - (3/2)*n*k)*(1+n)^((1/2)*n^2 + n + 5/12)*(1+k)^(-(1/2)*k^2 - k - 5/12)*(1 + n - k)^(-(1/2)*n^2 + n*k - (1/2)*k^2 - n + k - 5/12)/(sqrt(2*Pi). - _Peter Luschny_, Nov 26 2012 %F A009963 T(n,k) = (n-k)!*C(n-1,k-1)*T(n-1,k-1) + k!*C(n-1,k)*T(n-1,k) where C(i,j) is given by A007318. - _Tom Edgar_, Feb 13 2014 %F A009963 T(n,k) = Product_{i=1..k} (n+1-i)!/i!. - _Alois P. Heinz_, Jun 07 2017 %F A009963 T(n,k) = BarnesG(n+2)/(BarnesG(k+2)*BarnesG(n-k+2)). - _G. C. Greubel_, Jan 04 2022 %e A009963 Rows start: %e A009963 1; %e A009963 1, 1; %e A009963 1, 2, 1; %e A009963 1, 6, 6, 1; %e A009963 1, 24, 72, 24, 1; %e A009963 1, 120, 1440, 1440, 120, 1; etc. %t A009963 (* First program *) %t A009963 row[n_]:= Table[Product[i+j, {i,1,n-k}, {j,1,k}], {k,0,n}]; %t A009963 Array[row, 9, 0] // Flatten (* _Jean-François Alcover_, Jun 01 2019, after _Peter Luschny_ *) %t A009963 (* Second program *) %t A009963 T[n_, k_]:= BarnesG[n+2]/(BarnesG[k+2]*BarnesG[n-k+2]); %t A009963 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 04 2022 *) %o A009963 (Sage) %o A009963 def A009963_row(n): %o A009963 return [mul(mul(i+j for j in (1..k)) for i in (1..n-k)) for k in (0..n)] %o A009963 for n in (0..7): A009963_row(n) # _Peter Luschny_, Nov 26 2012 %o A009963 (Sage) %o A009963 def triangle_to_n_rows(n): #changing n will give you the triangle to row n. %o A009963 N=[[1]+n*[0]] %o A009963 for i in [1..n]: %o A009963 N.append([]) %o A009963 for j in [0..n]: %o A009963 if i>=j: %o A009963 N[i].append(factorial(i-j)*binomial(i-1,j-1)*N[i-1][j-1]+factorial(j)*binomial(i-1,j)*N[i-1][j]) %o A009963 else: %o A009963 N[i].append(0) %o A009963 return [[N[i][j] for j in [0..i]] for i in [0..n]] %o A009963 # _Tom Edgar_, Feb 13 2014 %o A009963 (Magma) %o A009963 A009963:= func< n,k | (1/Factorial(n+1))*(&*[ Factorial(n-j+1)/Factorial(j): j in [0..k]]) >; %o A009963 [A009963(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jan 04 2022 %Y A009963 Cf. A000178, A007318, A060854, A090441. %Y A009963 Central column is A079478. %Y A009963 Columns include A010796, A010797, A010798, A010799, A010800. %Y A009963 Row sums give A193520. %K A009963 nonn,tabl %O A009963 0,5 %A A009963 _N. J. A. Sloane_