This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A009975 #48 Jul 12 2023 12:39:00 %S A009975 1,31,961,29791,923521,28629151,887503681,27512614111,852891037441, %T A009975 26439622160671,819628286980801,25408476896404831,787662783788549761, %U A009975 24417546297445042591,756943935220796320321,23465261991844685929951,727423121747185263828481 %N A009975 Powers of 31: a(n) = 31^n. %C A009975 Same as Pisot sequences E(1, 31), L(1, 31), P(1, 31), T(1, 31). Essentially same as Pisot sequences E(31, 961), L(31, 961), P(31, 961), T(31, 961). See A008776 for definitions of Pisot sequences. %C A009975 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 31-colored compositions of n such that no adjacent parts have the same color. - _Milan Janjic_, Nov 17 2011 %H A009975 T. D. Noe, <a href="/A009975/b009975.txt">Table of n, a(n) for n = 0..100</a> %H A009975 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A009975 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (31). %F A009975 G.f.: 1/(1-31*x). - _Philippe Deléham_, Nov 24 2008 %F A009975 E.g.f.: exp(31x). - _Geoffrey Critzer_, Feb 28 2009 %F A009975 a(n) = 31*a(n-1). - _Zerinvary Lajos_, Apr 29 2009 %t A009975 Table[31^n, {n, 0, 15}] (* _Robert P. P. McKone_, Jan 04 2022 *) %o A009975 (PARI) a(n)=31^n \\ _Charles R Greathouse IV_, Sep 24 2015 %K A009975 nonn,easy %O A009975 0,2 %A A009975 _N. J. A. Sloane_