This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A009977 #38 Jul 12 2025 04:25:32 %S A009977 1,33,1089,35937,1185921,39135393,1291467969,42618442977, %T A009977 1406408618241,46411484401953,1531578985264449,50542106513726817, %U A009977 1667889514952984961,55040353993448503713,1816331681783800622529,59938945498865420543457,1977985201462558877934081,65273511648264442971824673 %N A009977 Powers of 33. %C A009977 Same as Pisot sequences E(1, 33), L(1, 33), P(1, 33), T(1, 33). Essentially same as Pisot sequences E(33, 1089), L(33, 1089), P(33, 1089), T(33, 1089). See A008776 for definitions of Pisot sequences. %C A009977 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 33-colored compositions of n such that no adjacent parts have the same color. - _Milan Janjic_, Nov 17 2011 %H A009977 T. D. Noe, <a href="/A009977/b009977.txt">Table of n, a(n) for n=0..100</a> %H A009977 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>. %H A009977 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (33). %F A009977 G.f.: 1/(1-33*x). - _Philippe Deléham_, Nov 24 2008 %F A009977 a(n) = 33^n; a(n) = 33*a(n-1), n > 0; a(0)=1. - _Vincenzo Librandi_, Nov 21 2010 %F A009977 From _Elmo R. Oliveira_, Jul 08 2025: (Start) %F A009977 E.g.f.: exp(33*x). %F A009977 a(n) = A000244(n)*A001020(n) = A327926(n)/A000244(n). (End) %t A009977 33^Range[0, 20] (* _Paolo Xausa_, Jul 12 2025 *) %o A009977 (Magma) [33^n: n in [0..100]]; // _Vincenzo Librandi_, Nov 21 2010 %Y A009977 Cf. A000244, A001020, A008776, A327926. %K A009977 nonn,easy %O A009977 0,2 %A A009977 _N. J. A. Sloane_