cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009979 Powers of 35.

This page as a plain text file.
%I A009979 #41 Jul 10 2025 16:04:02
%S A009979 1,35,1225,42875,1500625,52521875,1838265625,64339296875,
%T A009979 2251875390625,78815638671875,2758547353515625,96549157373046875,
%U A009979 3379220508056640625,118272717781982421875,4139545122369384765625,144884079282928466796875,5070942774902496337890625
%N A009979 Powers of 35.
%C A009979 Same as Pisot sequences E(1, 35), L(1, 35), P(1, 35), T(1, 35). Essentially same as Pisot sequences E(35, 1225), L(35, 1225), P(35, 1225), T(35, 1225). See A008776 for definitions of Pisot sequences.
%C A009979 If X_1, X_2, ..., X_n is a partition of the set {1,2,...,2*n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1,2,..., 2*n}->{1,2,3,4,5,6} such that for fixed y_1,y_2,...,y_n in {1,2,3,4,5,6} we have f(X_i)<>{y_i}, (i=1,2,...,n). - _Milan Janjic_, May 24 2007
%C A009979 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 35-colored compositions of n such that no adjacent parts have the same color. - _Milan Janjic_, Nov 17 2011
%H A009979 T. D. Noe, <a href="/A009979/b009979.txt">Table of n, a(n) for n = 0..100</a>
%H A009979 Milan Janjic, <a href="https://old.pmf.unibl.org/wp-content/uploads/2017/10/enumfun.pdf">Enumerative Formulae for Some Functions on Finite Sets</a>.
%H A009979 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H A009979 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (35).
%F A009979 G.f.: 1/(1-35*x). - _Philippe Deléham_, Nov 24 2008
%F A009979 a(n) = 35^n; a(n) = 35*a(n-1), n > 0; a(0)=1. - _Vincenzo Librandi_, Nov 21 2010
%F A009979 From _Elmo R. Oliveira_, Jul 10 2025: (Start)
%F A009979 E.g.f.: exp(35*x).
%F A009979 a(n) = A000351(n)*A000420(n). (End)
%t A009979 35^Range[0,15] (* _Harvey P. Dale_, Sep 10 2011 *)
%o A009979 (Magma)[35^n: n in [0..100]]; // _Vincenzo Librandi_, Nov 21 2010
%Y A009979 Cf. A000351, A000420, A008776.
%K A009979 nonn,easy
%O A009979 0,2
%A A009979 _N. J. A. Sloane_