cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009988 Powers of 44.

This page as a plain text file.
%I A009988 #37 Jul 09 2025 09:54:24
%S A009988 1,44,1936,85184,3748096,164916224,7256313856,319277809664,
%T A009988 14048223625216,618121839509504,27197360938418176,1196683881290399744,
%U A009988 52654090776777588736,2316779994178213904384,101938319743841411792896,4485286068729022118887424,197352587024076973231046656
%N A009988 Powers of 44.
%C A009988 Same as Pisot sequences E(1, 44), L(1, 44), P(1, 44), T(1, 44). Essentially same as Pisot sequences E(44, 1936), L(44, 1936), P(44, 1936), T(44, 1936). See A008776 for definitions of Pisot sequences.
%C A009988 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 44-colored compositions of n such that no adjacent parts have the same color. - _Milan Janjic_, Nov 17 2011
%H A009988 T. D. Noe, <a href="/A009988/b009988.txt">Table of n, a(n) for n = 0..100</a>
%H A009988 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H A009988 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (44).
%F A009988 G.f.: 1/(1-44*x). - _Philippe Deléham_, Nov 24 2008
%F A009988 a(n) = 44^n; a(n) = 44*a(n-1), a(0)=1. - _Vincenzo Librandi_, Nov 21 2010
%F A009988 From _Elmo R. Oliveira_, Jul 08 2025: (Start)
%F A009988 E.g.f.: exp(44*x).
%F A009988 a(n) = A000079(n)*A009966(n) = A000302(n)*A001020(n). (End)
%t A009988 44^Range[0,20] (* _Harvey P. Dale_, May 22 2017 *)
%o A009988 (Magma)[44^n: n in [0..20]]; // _Vincenzo Librandi_, Nov 21 2010
%Y A009988 Cf. A000079, A000302, A001020, A008776, A009966.
%K A009988 nonn,easy
%O A009988 0,2
%A A009988 _N. J. A. Sloane_