cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009992 Powers of 48: a(n) = 48^n.

This page as a plain text file.
%I A009992 #64 Jul 12 2023 12:50:04
%S A009992 1,48,2304,110592,5308416,254803968,12230590464,587068342272,
%T A009992 28179280429056,1352605460594688,64925062108545024,
%U A009992 3116402981210161152,149587343098087735296,7180192468708211294208,344649238497994142121984,16543163447903718821855232
%N A009992 Powers of 48: a(n) = 48^n.
%C A009992 Same as Pisot sequences E(1, 48), L(1, 48), P(1, 48), T(1, 48). Essentially same as Pisot sequences E(48, 2304), L(48, 2304), P(48, 2304), T(48, 2304). See A008776 for definitions of Pisot sequences.
%C A009992 If X_1, X_2, ..., X_n is a partition of the set {1,2,...,2*n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1,2,..., 2*n}->{1,2,3,4,5,6,7} such that for fixed y_1,y_2,...,y_n in {1,2,3,4,5,6,7} we have f(X_i)<>{y_i}, (i=1,2,...,n). - _Milan Janjic_, May 24 2007
%C A009992 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 48-colored compositions of n such that no adjacent parts have the same color. - _Milan Janjic_, Nov 17 2011
%H A009992 T. D. Noe, <a href="/A009992/b009992.txt">Table of n, a(n) for n = 0..100</a>
%H A009992 Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a>
%H A009992 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A009992 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (48).
%F A009992 G.f.: 1/(1-48*x). - _Philippe Deléham_, Nov 24 2008
%F A009992 a(n) = 48^n; a(n) = 48*a(n-1), a(0)=1. - _Vincenzo Librandi_, Nov 21 2010
%F A009992 E.g.f.: exp(48*x). - _Muniru A Asiru_, Nov 21 2018
%p A009992 A009992 := n -> 48^n: seq(A009992(n), n=0..20); # _M. F. Hasler_, Apr 19 2015
%t A009992 48^Range[0, 15] (* _Michael De Vlieger_, Jan 13 2018 *)
%o A009992 (Magma)[48^n: n in [0..20]] // _Vincenzo Librandi_, Nov 21 2010
%o A009992 (PARI) A009992(n)=48^n \\ _M. F. Hasler_, Apr 19 2015
%o A009992 (GAP) List([0..20],n->48^n); # _Muniru A Asiru_, Nov 21 2018
%o A009992 (Python) for n in range(0,20): print(48**n, end=', ') # _Stefano Spezia_, Nov 21 2018
%o A009992 (Sage) [(48)^n for n in range(20)] # _G. C. Greubel_, Nov 21 2018
%Y A009992 Cf. A001018 (powers of 8), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009991 (powers of 47), A087752 (powers of 49).
%Y A009992 Cf. A000079 (2^n), A000244 (3^n), A000302 (4^n), A000400 (6^n), A001018 (8^n), A001021 (12^n), A001025 (16^n), A009968 (24^n).
%K A009992 nonn,easy
%O A009992 0,2
%A A009992 _N. J. A. Sloane_
%E A009992 Edited by _M. F. Hasler_, Apr 19 2015