cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010046 High-temperature expansion of Ising model susceptibility chi_4 for cubic lattice.

This page as a plain text file.
%I A010046 #10 Nov 26 2024 02:58:12
%S A010046 2,48,1272,38784,1341408,52186368,2256454272,107494477824,
%T A010046 5595152936448,316081923944448,19262189406185472,1259828274265227264,
%U A010046 88026828815690047488,6544693787367160086528,515907116666737635459072,42981965201161894878511104,3773829205951827807017238528
%N A010046 High-temperature expansion of Ising model susceptibility chi_4 for cubic lattice.
%H A010046 P. Butera and M. Pernici, <a href="https://doi.org/10.1103/PhysRevE.86.011139">High-temperature expansions of the higher susceptibilities for the Ising model in general dimension d</a>, Phys. Rev. E 86, 011139 (2012); arXiv:<a href="https://arxiv.org/abs/1209.3592">1209.3592</a> [hep-lat], 2012. Appendix A gives chi_4 as a function of K, which is the negated e.g.f. of this sequence at d=3.
%H A010046 M. Lüscher and P. Weisz, <a href="https://doi.org/10.1016/0550-3213(88)90602-5">Application of the linked cluster expansion to the n-component phi^4 theory</a>, Nuclear Physics B 300 (1988), 325-359.
%Y A010046 Cf. A010045 (square), A010047 (4D cubic), A010040 (chi_2, see also A002913), A010043 (mu_2).
%K A010046 nonn
%O A010046 0,1
%A A010046 _N. J. A. Sloane_
%E A010046 Name clarified, a(14)-a(16) using Butera & Pernici's formulas added by _Andrey Zabolotskiy_, Nov 25 2024