cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010101 Maximal size of binary code of length n and asymmetric distance 2.

This page as a plain text file.
%I A010101 #25 Aug 24 2020 22:40:16
%S A010101 1,2,2,4,6,12,18,36,62
%N A010101 Maximal size of binary code of length n and asymmetric distance 2.
%C A010101 Size of optimal single-error-correcting code for Z-channel.
%C A010101 Next 3 terms are known to be in the range 112-117, 198-210 and 379-410 respectively.
%D A010101 S. Butenko, P. Pardalos, I. Sergienko, V. P. Shylo and P. Stetsyuk, Estimating the size of correcting codes using extremal graph problems, Optimization, 227-243, Springer Optim. Appl., 32, Springer, New York, 2009.
%D A010101 T. Etzion, New lower bounds for asymmetric and unidirectional codes, IEEE Trans. Inform. Theory, 37 (1991), 1696-1705.
%D A010101 J. H. Weber, Bounds and Constructions for Binary Block Codes Correcting Asymmetric or Unidirectional Errors, Ph. D. Thesis, Tech. Univ. Delft, 1989.
%D A010101 J. H. Weber, C. de Vroedt and D. E. Boekee, Bounds and constructions for binary codes of length less than 24 and asymmetric distance less than 6, IEEE Trans. Inform. Theory, 34 (1988), 1321-1332.
%H A010101 Tuvi Etzion and Patric R. J. Östergård, <a href="https://doi.org/10.1109/18.651069">Greedy and heuristic algorithms for codes and colorings</a>, IEEE Transactions on Information Theory, 44 (1998), 382-388, [<a href="https://web.archive.org/web/20080612052947/http://www.tcs.hut.fi/~pat/codelist.html">Wayback Machine copy</a>].
%H A010101 N. J. A. Sloane, <a href="/A265032/a265032.html">Challenge Problems: Independent Sets in Graphs</a>
%K A010101 nonn,nice,hard
%O A010101 1,2
%A A010101 _N. J. A. Sloane_