cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010144 Continued fraction for sqrt(59).

This page as a plain text file.
%I A010144 #28 Nov 13 2023 07:04:14
%S A010144 7,1,2,7,2,1,14,1,2,7,2,1,14,1,2,7,2,1,14,1,2,7,2,1,14,1,2,7,2,1,14,1,
%T A010144 2,7,2,1,14,1,2,7,2,1,14,1,2,7,2,1,14,1,2,7,2,1,14,1,2,7,2,1,14,1,2,7,
%U A010144 2,1,14,1,2,7,2,1,14,1,2
%N A010144 Continued fraction for sqrt(59).
%H A010144 Harry J. Smith, <a href="/A010144/b010144.txt">Table of n, a(n) for n = 0..20000</a>
%H A010144 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>.
%H A010144 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H A010144 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,1).
%F A010144 From _Amiram Eldar_, Nov 13 2023: (Start)
%F A010144 Multiplicative with a(2^e) = 2, a(3^e) = 7, and a(p^e) = 1 for p >= 5.
%F A010144 Dirichlet g.f.: zeta(s) * (1 + 1/2^s) * (1 + 2/3^(s-1)). (End)
%e A010144 7.681145747868608175769687021... = 7 + 1/(1 + 1/(2 + 1/(7 + 1/(2 + ...)))). - _Harry J. Smith_, Jun 07 2009
%t A010144 ContinuedFraction[Sqrt[59],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 07 2011 *)
%t A010144 PadRight[{7},120,{14,1,2,7,2,1}] (* _Harvey P. Dale_, May 15 2017 *)
%o A010144 (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(59)); for (n=0, 20000, write("b010144.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 07 2009
%Y A010144 Cf. A010512 (decimal expansion).
%K A010144 nonn,cofr,easy,mult
%O A010144 0,1
%A A010144 _N. J. A. Sloane_