cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010152 Continued fraction for sqrt(74).

This page as a plain text file.
%I A010152 #28 Nov 13 2023 07:07:52
%S A010152 8,1,1,1,1,16,1,1,1,1,16,1,1,1,1,16,1,1,1,1,16,1,1,1,1,16,1,1,1,1,16,
%T A010152 1,1,1,1,16,1,1,1,1,16,1,1,1,1,16,1,1,1,1,16,1,1,1,1,16,1,1,1,1,16,1,
%U A010152 1,1,1,16,1,1,1,1,16,1,1,1,1
%N A010152 Continued fraction for sqrt(74).
%H A010152 Harry J. Smith, <a href="/A010152/b010152.txt">Table of n, a(n) for n = 0..20000</a>
%H A010152 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>.
%H A010152 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H A010152 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1).
%F A010152 From _Amiram Eldar_, Nov 13 2023: (Start)
%F A010152 Multiplicative with a(5^e) = 16, and a(p^e) = 1 for p != 5.
%F A010152 Dirichlet g.f.: zeta(s) * (1 + 3/5^(s-1)). (End)
%e A010152 8.602325267042626771729473535... = 8 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 09 2009
%t A010152 ContinuedFraction[Sqrt[74],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 08 2011 *)
%t A010152 PadRight[{8},120,{16,1,1,1,1}] (* _Harvey P. Dale_, Nov 14 2013 *)
%o A010152 (PARI) { allocatemem(932245000); default(realprecision, 16000); x=contfrac(sqrt(74)); for (n=0, 20000, write("b010152.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 09 2009
%Y A010152 Cf. A010526 (decimal expansion).
%K A010152 nonn,cofr,easy,mult
%O A010152 0,1
%A A010152 _N. J. A. Sloane_