This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010156 #28 Nov 13 2023 07:09:35 %S A010156 8,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4, %T A010156 1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16, %U A010156 1,4,1,16,1,4,1,16,1,4,1,16 %N A010156 Continued fraction for sqrt(78). %H A010156 Harry J. Smith, <a href="/A010156/b010156.txt">Table of n, a(n) for n = 0..20000</a> %H A010156 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>. %H A010156 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>. %H A010156 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1). %F A010156 From _Amiram Eldar_, Nov 13 2023: (Start) %F A010156 Multiplicative with a(2) = 4, a(2^e) = 16 for e >= 2, and a(p^e) = 1 for an odd prime p. %F A010156 Dirichlet g.f.: zeta(s) * (1 + 3/2^s + 4/4^(s-1)). (End) %e A010156 8.83176086632784685476404272... = 8 + 1/(1 + 1/(4 + 1/(1 + 1/(16 + ...)))). - _Harry J. Smith_, Jun 09 2009 %t A010156 ContinuedFraction[Sqrt[78],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 09 2011 *) %t A010156 PadRight[{8},120,{16,1,4,1}] (* _Harvey P. Dale_, Sep 10 2023 *) %o A010156 (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(78)); for (n=0, 20000, write("b010156.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 09 2009 %Y A010156 Cf. A010530 (decimal expansion). %K A010156 nonn,cofr,easy,mult %O A010156 0,1 %A A010156 _N. J. A. Sloane_