This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010171 #42 Mar 25 2024 15:00:20 %S A010171 10,6,1,2,1,1,9,1,1,2,1,6,20,6,1,2,1,1,9,1,1,2,1,6,20,6,1,2,1,1,9,1,1, %T A010171 2,1,6,20,6,1,2,1,1,9,1,1,2,1,6,20,6,1,2,1,1,9,1,1,2,1,6,20,6,1,2,1,1, %U A010171 9,1,1,2,1,6,20,6,1,2,1,1,9,1,1,2,1,6,20 %N A010171 Continued fraction for sqrt(103). %H A010171 Vincenzo Librandi, <a href="/A010171/b010171.txt">Table of n, a(n) for n = 0..999</a> %H A010171 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a> %H A010171 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %H A010171 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,1). %t A010171 ContinuedFraction[Sqrt[103],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 10 2011 *) %t A010171 PadRight[{10},120,{20,6,1,2,1,1,9,1,1,2,1,6}] (* _Harvey P. Dale_, Mar 25 2024 *) %o A010171 (Python) %o A010171 from sympy import sqrt %o A010171 from sympy.ntheory.continued_fraction import continued_fraction_iterator %o A010171 def aupton(terms): %o A010171 gen = continued_fraction_iterator(sqrt(103)) %o A010171 return [next(gen) for i in range(terms)] %o A010171 print(aupton(85)) # _Michael S. Branicky_, Oct 06 2021 %Y A010171 Cf. A187768 (sqrt(103)). %K A010171 nonn,cofr %O A010171 0,1 %A A010171 _N. J. A. Sloane_