This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010173 #48 Dec 27 2023 00:12:41 %S A010173 10,2,1,9,1,2,20,2,1,9,1,2,20,2,1,9,1,2,20,2,1,9,1,2,20,2,1,9,1,2,20, %T A010173 2,1,9,1,2,20,2,1,9,1,2,20,2,1,9,1,2,20,2,1,9,1,2,20,2,1,9,1,2,20,2,1, %U A010173 9,1,2,20,2,1,9,1,2,20,2,1 %N A010173 Continued fraction for sqrt(107). %H A010173 Vincenzo Librandi, <a href="/A010173/b010173.txt">Table of n, a(n) for n = 0..999</a> %H A010173 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a> %H A010173 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %H A010173 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,1). %F A010173 G.f.: (-10*x^6 - 2*x^5 - x^4 - 9*x^3 - x^2 - 2*x - 10)/(x^6 - 1). - _Chai Wah Wu_, Oct 02 2021 %t A010173 ContinuedFraction[Sqrt[107],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 11 2011 *) %o A010173 (Python) %o A010173 from sympy import sqrt %o A010173 from sympy.ntheory.continued_fraction import continued_fraction_iterator %o A010173 def aupton(terms): %o A010173 gen = continued_fraction_iterator(sqrt(107)) %o A010173 return [next(gen) for i in range(terms)] %o A010173 print(aupton(82)) # _Michael S. Branicky_, Oct 02 2021 %Y A010173 Cf. A177935 (decimal expansion), A041192/A041193 (convergents). %K A010173 nonn,cofr,easy %O A010173 0,1 %A A010173 _N. J. A. Sloane_