cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010173 Continued fraction for sqrt(107).

This page as a plain text file.
%I A010173 #48 Dec 27 2023 00:12:41
%S A010173 10,2,1,9,1,2,20,2,1,9,1,2,20,2,1,9,1,2,20,2,1,9,1,2,20,2,1,9,1,2,20,
%T A010173 2,1,9,1,2,20,2,1,9,1,2,20,2,1,9,1,2,20,2,1,9,1,2,20,2,1,9,1,2,20,2,1,
%U A010173 9,1,2,20,2,1,9,1,2,20,2,1
%N A010173 Continued fraction for sqrt(107).
%H A010173 Vincenzo Librandi, <a href="/A010173/b010173.txt">Table of n, a(n) for n = 0..999</a>
%H A010173 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>
%H A010173 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%H A010173 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,1).
%F A010173 G.f.: (-10*x^6 - 2*x^5 - x^4 - 9*x^3 - x^2 - 2*x - 10)/(x^6 - 1). - _Chai Wah Wu_, Oct 02 2021
%t A010173 ContinuedFraction[Sqrt[107],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 11 2011 *)
%o A010173 (Python)
%o A010173 from sympy import sqrt
%o A010173 from sympy.ntheory.continued_fraction import continued_fraction_iterator
%o A010173 def aupton(terms):
%o A010173     gen = continued_fraction_iterator(sqrt(107))
%o A010173     return [next(gen) for i in range(terms)]
%o A010173 print(aupton(82)) # _Michael S. Branicky_, Oct 02 2021
%Y A010173 Cf. A177935 (decimal expansion), A041192/A041193 (convergents).
%K A010173 nonn,cofr,easy
%O A010173 0,1
%A A010173 _N. J. A. Sloane_