cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010194 Continued fraction for sqrt(135).

This page as a plain text file.
%I A010194 #29 Nov 15 2023 01:12:34
%S A010194 11,1,1,1,1,1,1,1,22,1,1,1,1,1,1,1,22,1,1,1,1,1,1,1,22,1,1,1,1,1,1,1,
%T A010194 22,1,1,1,1,1,1,1,22,1,1,1,1,1,1,1,22,1,1,1,1,1,1,1,22,1,1,1,1,1,1,1,
%U A010194 22,1,1,1,1,1,1,1,22,1,1,1,1
%N A010194 Continued fraction for sqrt(135).
%H A010194 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>.
%H A010194 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H A010194 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,1).
%F A010194 From _Amiram Eldar_, Nov 15 2023: (Start)
%F A010194 Multiplicative with a(2^e) = 1 if e <=2 and 22 otherwise, and a(p^e) = 1 for an odd prime p.
%F A010194 Dirichlet g.f.: zeta(s) * (1 + 21/8^s). (End)
%t A010194 ContinuedFraction[Sqrt[135],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 12 2011 *)
%t A010194 PadRight[{11},120,{22,1,1,1,1,1,1,1}] (* _Harvey P. Dale_, Feb 24 2018 *)
%Y A010194 Cf. A140248.
%K A010194 nonn,cofr,easy,mult
%O A010194 0,1
%A A010194 _N. J. A. Sloane_