This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010347 #28 Feb 16 2025 08:32:32 %S A010347 1,2,3,4,5,243,514,14340,14341,14432,23520,23521,44405,435152,5435254, %T A010347 12222215,555435035,1053025020422,1053122514003,1435403205450, %U A010347 1435403205451,1450005114454,2135254510352,2145555022413,2500150125455,133024510545125 %N A010347 Base-6 Armstrong or narcissistic numbers, written in base 6. %C A010347 From _M. F. Hasler_, Nov 18 2019: (Start) %C A010347 Whenever a(n) ends in 0 (n = 8, 11, 20, 28), then a(n+1) = a(n) + 1 also satisfies the definition. %C A010347 Like the other single-digit terms, zero would satisfy the definition (n = Sum_{i=1..k} d[i]^k where d[1..k] are the base 6 digits of n), but here only positive numbers are considered. (End) %H A010347 Joseph Myers, <a href="/A010347/b010347.txt">Table of n, a(n) for n = 1..30</a> (the full list of terms, from Winter) %H A010347 Gordon L. Miller and Mary T. Whalen, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/30-3/miller.pdf">Armstrong Numbers: 153 = 1^3 + 5^3 + 3^3</a>, Fibonacci Quarterly, 30-3 (1992), 221-224. %H A010347 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NarcissisticNumber.html">Narcissistic Number</a> %H A010347 D. T. Winter, <a href="http://web.archive.org/web/20100109234250/http://ftp.cwi.nl:80/dik/Armstrong">Table of Armstrong Numbers</a> (latest backup on web.archive.org from Jan. 2010; page no longer available), published not later than Aug. 2003. %o A010347 (PARI) A010347=[fromdigits(digits(n,6))|n<-A010348] \\ _M. F. Hasler_, Nov 18 2019 %o A010347 (PARI) select( is_A010347(n)={vecmax(n=digits(n+!n))<6 && vecsum([d^#n|d<-n])==fromdigits(n,6)}, [0..10^5]) \\ _M. F. Hasler_, Nov 20 2019 %Y A010347 Cf. A010348 (a(n) written in base 10). %Y A010347 In other bases: A010343 (base 4), A010345 (base 5), A010349 (base 7), A010351 (base 8), A010352 (base 9), A005188 (base 10). %K A010347 base,fini,full,nonn %O A010347 1,2 %A A010347 _N. J. A. Sloane_ %E A010347 Edited by _Joseph Myers_, Jun 28 2009