This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010350 #27 Feb 16 2025 08:32:32 %S A010350 1,2,3,4,5,6,10,25,32,45,133,134,152,250,3190,3222,3612,3613,4183, %T A010350 9286,35411,191334,193393,376889,535069,794376,8094840,10883814, %U A010350 16219922,20496270,32469576,34403018,416002778,416352977,420197083,725781499,1500022495,15705029375,15705029376,28700208851 %N A010350 Base-7 Armstrong or narcissistic numbers (written in base 10). %C A010350 Like the other single-digit terms, zero would satisfy the definition (n = Sum_{i=1..k} d[i]^k when d[1..k] are the digits of n), but here only positive numbers are considered. - _M. F. Hasler_, Nov 20 2019 %H A010350 Joseph Myers, <a href="/A010350/b010350.txt">Table of n, a(n) for n = 1..59</a> (the full list of terms, from Winter) %H A010350 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NarcissisticNumber.html">Narcissistic Number</a> %H A010350 D. T. Winter, <a href="http://ftp.cwi.nl/dik/Armstrong">Table of Armstrong Numbers</a> %o A010350 (PARI) select( {is_A010350(n)=n==vecsum([d^#n|d<-n=digits(n,7)])}, [0..10^6]) \\ This yields only terms < 10^6, for illustration of is_A010350(). - _M. F. Hasler_, Nov 20 2019 %Y A010350 Cf. A010349 (a(n) written in base 7). %Y A010350 In other bases: A010344 (base 4), A010346 (base 5), A010348 (base 6), A010354 (base 8), A010353 (base 9), A005188 (base 10), A161948 (base 11), A161949 (base 12), A161950 (base 13), A161951 (base 14), A161952 (base 15), A161953 (base 16). %K A010350 base,fini,full,nonn %O A010350 1,2 %A A010350 _N. J. A. Sloane_ %E A010350 Edited by _Joseph Myers_, Jun 28 2009