This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010353 #29 Feb 16 2025 08:32:32 %S A010353 1,2,3,4,5,6,7,8,41,50,126,127,468,469,1824,8052,8295,9857,1198372, %T A010353 3357009,3357010,6287267,156608073,156608074,403584750,403584751, %U A010353 586638974,3302332571,42256814922,42256814923,114842637961,155896317510,552468844242,552468844243,647871937482,686031429775 %N A010353 Base-9 Armstrong or narcissistic numbers (written in base 10). %C A010353 From _M. F. Hasler_, Nov 20 2019: (Start) %C A010353 Like the other single-digit terms, zero would satisfy the definition (n = Sum_{i=1..k} d[i]^k when d[1..k] are the base 9 digits of n), but here only positive numbers are considered. %C A010353 Terms a(n+1) = a(n) + 1 (n = 11, 13, 20, 23, 25, 29, 33, 48, 51, 57) correspond to solutions a(n) that are multiples of 9, in which case a(n) + 1 is also a solution. (End) %H A010353 Joseph Myers, <a href="/A010353/b010353.txt">Table of n, a(n) for n = 1..58</a> (the full list of terms, from Winter) %H A010353 René-Louis Clerc, <a href="https://hal.science/hal-04376934">Perfect r-narcissistic numbers in any base</a>, hal-04376934, 2024. %H A010353 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NarcissisticNumber.html">Narcissistic Number</a> %H A010353 D. T. Winter, <a href="http://ftp.cwi.nl/dik/Armstrong">Table of Armstrong Numbers</a> %e A010353 126 = 150_9 (= 1*9^2 + 5*9^1 + 0*9^0) = 1^3 + 5^3 + 0^3. It is easy to see that 126 + 1 then also satisfies this relation, as for all other terms that are multiples of 9. - _M. F. Hasler_, Nov 20 2019 %t A010353 Select[Range[9^7], # == Total[IntegerDigits[#, 9]^IntegerLength[#, 9]] &] (* _Michael De Vlieger_, Jan 17 2024 *) %o A010353 (PARI) select( {is_A010353(n)=n==vecsum([d^#n|d<-n=digits(n,9)])}, [0..10^4]) \\ This gives only terms < 10^6, for illustration of is_A010353(). - _M. F. Hasler_, Nov 20 2019 %Y A010353 Cf. A010352 (a(n) written in base 9). %Y A010353 In other bases: A010344 (base 4), A010346 (base 5), A010348 (base 6), A010350 (base 7), A010354 (base 8), A005188 (base 10), A161948 (base 11), A161949 (base 12), A161950 (base 13), A161951 (base 14), A161952 (base 15), A161953 (base 16). %K A010353 base,fini,full,nonn %O A010353 1,2 %A A010353 _N. J. A. Sloane_ %E A010353 Edited by _Joseph Myers_, Jun 28 2009