This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010373 #39 Oct 27 2023 21:08:16 %S A010373 1,1,3,10,36,153,780,4005,22366,128778,766941,4674153,29180980, %T A010373 185117661,1193918545,7800816871,51584238201,344632209090, %U A010373 2324190638055,15804057614995,108277583483391,746878494484128,5183852459907628 %N A010373 Number of unrooted quartic trees with 2n (unlabeled) nodes and possessing a bicentroid; number of 2n-carbon alkanes C(2n)H(4n+2) with a bicentroid, ignoring stereoisomers. %C A010373 The degree of each node is <= 4. %C A010373 A bicentroid is an edge which connects two subtrees of exactly m/2 nodes, where m is the number of nodes in the tree. If a bicentroid exists it is unique. Clearly trees with an odd number of nodes cannot have a bicentroid. %C A010373 Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A086200 for the analogous sequence with stereoisomers counted. %D A010373 F. Harary, Graph Theory, p. 36, for definition of bicentroid. %H A010373 Alois P. Heinz, <a href="/A010373/b010373.txt">Table of n, a(n) for n = 1..500</a> (terms n = 1..100 from Vincenzo Librandi) %H A010373 A. Cayley, <a href="/A000022/a000022.pdf">Über die analytischen Figuren, welche in der Mathematik Bäume genannt werden und ihre Anwendung auf die Theorie chemischer Verbindungen</a>, Chem. Ber. 8 (1875), 1056-1059. (Annotated scanned copy) %H A010373 E. M. Rains and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/cayley.html">On Cayley's Enumeration of Alkanes (or 4-Valent Trees)</a>, J. Integer Sequences, Vol. 2 (1999), Article 99.1.1. %H A010373 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A010373 a(n) = b(n)*(b(n)+1)/2, where b(n) = A000598[ n ]. %p A010373 M[1146] := [ T,{T=Union(Epsilon,U),U=Prod(Z,Set(U,card<=3))},unlabeled ]: %p A010373 bicenteredHC := proc(n) option remember; if n mod 2<>0 then 0 else binomial(count(M[ 1146 ],size=n/2)+1,2) fi end: %t A010373 m = 24; a[x_] = Sum[c[k]*x^k, {k, 0, m}]; s[x_] = Series[ 1 + (1/6)*x*(a[x]^3 + 3*a[x]*a[x^2] + 2*a[x^3]) - a[x], {x, 0, m}]; eq = Thread[ CoefficientList[s[x], x] == 0]; %t A010373 Do[so[k] = Solve[eq[[1]], c[k-1]][[1]]; eq = Rest[eq] /. so[k], {k, 1, m+1}]; b = Array[c, m, 0] /. Flatten[ Array[so, m+1] ]; Rest[b*(b+1)/2] (* _Jean-François Alcover_, Jul 25 2011, after A000598 *) %Y A010373 A000602(n) = A010372(n) + a(n/2) for n even, A000602(n) = A010372(n) for n odd. %Y A010373 Cf. A000200, A000598. %K A010373 nonn,easy %O A010373 1,3 %A A010373 _Paul Zimmermann_, _N. J. A. Sloane_ %E A010373 Description revised by Steve Strand (snstrand(AT)comcast.net), Aug 20 2003