cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010474 Decimal expansion of square root of 18.

This page as a plain text file.
%I A010474 #48 Aug 21 2023 10:25:55
%S A010474 4,2,4,2,6,4,0,6,8,7,1,1,9,2,8,5,1,4,6,4,0,5,0,6,6,1,7,2,6,2,9,0,9,4,
%T A010474 2,3,5,7,0,9,0,1,5,6,2,6,1,3,0,8,4,4,2,1,9,5,3,0,0,3,9,2,1,3,9,7,2,1,
%U A010474 9,7,4,3,5,3,8,6,3,2,1,1,1,6,5,5,1,1,6,2,6,0,2,9,8,2,9,2,4,7,1
%N A010474 Decimal expansion of square root of 18.
%C A010474 Continued fraction expansion is 4 followed by {4, 8} repeated. - _Harry J. Smith_, Jun 05 2009
%C A010474 3*sqrt(2) = sqrt(18) is also the minimum width of the arms of the cellular automaton described in A294020. - _Omar E. Pol_, Oct 29 2017
%C A010474 Equals lambda(3) where lambda(n) = n*Product_{k=2..n-1} k^((n-k)/(n-k+1)). - _Michel Marcus_, Apr 02 2020
%H A010474 Harry J. Smith, <a href="/A010474/b010474.txt">Table of n, a(n) for n = 1..20000</a>
%H A010474 Michael Penn, <a href="https://www.youtube.com/watch?v=RsIm-OFKQUI">A nice algebra problem with complex numbers</a>, YouTube video, 2022.
%H A010474 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>
%e A010474 4.242640687119285146405066172629094235709015626130844219530039213972197....
%p A010474 evalf[100](sqrt(18)); # _Muniru A Asiru_, Feb 12 2019
%t A010474 RealDigits[Sqrt[18], 10, 100][[1]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 21 2011 *)
%o A010474 (PARI) default(realprecision, 100); sqrt(18) \\ _Harry J. Smith_, Jun 03 2009 (modified by _G. C. Greubel_, Feb 14 2019)
%o A010474 (Magma) SetDefaultRealField(RealField(100)); Sqrt(18); // _G. C. Greubel_, Feb 14 2019
%o A010474 (Sage) numerical_approx(sqrt(18), digits=100) # _G. C. Greubel_, Feb 14 2019
%Y A010474 Cf. A040013 (continued fraction). - _Harry J. Smith_, Jun 03 2009
%K A010474 nonn,cons
%O A010474 1,1
%A A010474 _N. J. A. Sloane_