This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010553 #58 Nov 03 2023 20:24:40 %S A010553 1,2,2,2,2,3,2,3,2,3,2,4,2,3,3,2,2,4,2,4,3,3,2,4,2,3,3,4,2,4,2,4,3,3, %T A010553 3,3,2,3,3,4,2,4,2,4,4,3,2,4,2,4,3,4,2,4,3,4,3,3,2,6,2,3,4,2,3,4,2,4, %U A010553 3,4,2,6,2,3,4,4,3,4,2,4,2 %N A010553 a(n) = tau(tau(n)). %C A010553 Ramanujan (1915) posed the problem of finding the extreme large values of a(n). Buttkewitz et al. determined the maximal order of log a(n). %C A010553 Every number eventually appears. Sequence A193987 gives the least term where each number appears. - _T. D. Noe_, Aug 10 2011 %D A010553 S. Ramanujan, Highly composite numbers. Proc. London Math. Soc., series 2, 14 (1915), 347-409. Republished in Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, pp. 78-128. %H A010553 Indranil Ghosh, <a href="/A010553/b010553.txt">Table of n, a(n) for n = 1..10000</a> (first 2000 terms from Enrique Pérez Herrero) %H A010553 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972. %H A010553 R. Bellman and H. N. Shapiro, <a href="http://www.jstor.org/stable/1969281">On a problem in additive number theory</a>, Annals Math., 49 (1948), 333-340. See Eq. 1.5. %H A010553 Yvonne Buttkewitz, Christian Elsholtz, Kevin Ford, Jan-Christoph Schlage-Puchta, <a href="http://arxiv.org/abs/1108.1815">A problem of Ramanujan, Erdos and Katai on the iterated divisor function</a>, arXiv:1108.1815 [math.NT], Aug 08 2011. %F A010553 a(n) = A000005(A000005(n)). a(1) = 1, a(p) = 2 for p = primes (A000040), a(pq) = 3 for pq = product of two distinct primes (A006881), a(pq...z) = k + 1 for pq...z = product of k (k > 2) distinct primes p,q,...,z (A120944), a(p^k) = A000005(k+1) for p^k = prime powers (A000961(n) for n > 1), k = natural numbers (A000027). - _Jaroslav Krizek_, Jul 17 2009 %F A010553 a(A007947(n)) = 1 + A001221(n); (n>1). - _Enrique Pérez Herrero_, May 30 2010 %F A010553 Asymptotically, Max_{i<=n} log(tau(tau(i))) = sqrt(log(n))/log_2(n) * (c + O(log_3(n)/log_2(n)) where c = 8*Sum_{j>=1} log^2 (1 + 1/j)) ~ 2.7959802335... [Buttkewitz et al.]. %p A010553 with(numtheory): f := n->tau(tau(n)); %t A010553 Table[Nest[DivisorSigma[0, #] &, n, 2], {n, 81}] (* _Michael De Vlieger_, Dec 24 2015 *) %o A010553 (PARI) A010553(n)=numdiv(numdiv(n)); \\ _Enrique Pérez Herrero_, Jul 13 2010 %Y A010553 Cf. A000005, A036450, A193987 (least number k such that tau(tau(k)) = n), A335831. %K A010553 nonn,easy %O A010553 1,2 %A A010553 _N. J. A. Sloane_