This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010556 #24 Aug 10 2022 03:07:40 %S A010556 1,8,56,392,2696,18536,126536,863720,5873768,39942184,271009112, %T A010556 1838725896,12457092504,84392312392,571140732808,3865210690888, %U A010556 26138072412040,176752645426600,1194553221342296,8073068110703880,54534614510976680 %N A010556 High temperature series for spin-1/2 Ising magnetic susceptibility on 4D simple cubic lattice. %D A010556 S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406. %H A010556 P. Butera and M. Pernici, <a href="https://doi.org/10.1103/PhysRevE.86.011139">High-temperature expansions of the higher susceptibilities for the Ising model in general dimension d</a>, Phys. Rev. E 86, 011139 (2012); arXiv:<a href="https://arxiv.org/abs/1209.3592">1209.3592</a> [hep-lat], 2012. %H A010556 Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/ising/ising.html">Lenz-Ising Constants</a> [broken link] %H A010556 Steven R. Finch, <a href="http://web.archive.org/web/20010207201511/http://www.mathsoft.com:80/asolve/constant/ising/ising.html">Lenz-Ising Constants</a> [From the Wayback Machine] %H A010556 M. E. Fisher and D. S. Gaunt, <a href="https://doi.org/10.1103/PhysRev.133.A224">Ising model and self-avoiding walks on hypercubical lattices and high density expansions</a>, Phys. Rev. 133 (1964), A224-A239. %H A010556 D. S. Gaunt, M. F. Sykes and S. McKenzie, <a href="https://doi.org/10.1088/0305-4470/12/6/018">Susceptibility and fourth-field derivative of the spin-1/2 Ising model for T > T_c and d = 4</a>, J. Phys. A 12 (1979), 871-877. %H A010556 M. A. Moore, <a href="https://doi.org/10.1103/PhysRevB.1.2238">Critical behavior of the four-dimensional Ising ferromagnet and the breakdown of scaling</a>, Phys. Rev. B 1 (1970), 2238-2240. %Y A010556 Cf. A002906 (2D), A002913 (3D), A010579 (5D), A010580 (6D), A030008 (7D). %Y A010556 Cf. A030046, A010041, A010044, A010047. %K A010556 nonn %O A010556 0,2 %A A010556 _N. J. A. Sloane_ %E A010556 a(17) corrected (was 176752645540264), a(18)-a(20) added using Butera & Pernici's formulas by _Andrey Zabolotskiy_, Aug 08 2022