This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010566 N1903 #45 Feb 26 2025 08:03:16 %S A010566 0,8,24,112,560,2976,16464,94016,549648,3273040,19781168,121020960, %T A010566 748039552,4664263744,29303071680,185307690240,1178635456752, %U A010566 7535046744864,48392012257184,312061600211680,2019822009608592,13117263660884768,85447982919036736 %N A010566 Number of 2n-step 2-dimensional closed self-avoiding paths on square lattice. %C A010566 a(n) = 4n*A002931(n). There are (2n) choices for the starting point and 2 choices for the orientation, in order to produce self-avoiding closed paths from a polygon of perimeter 2n. - _Philippe Flajolet_, Nov 22 2003 %D A010566 B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 461. %D A010566 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %H A010566 Felix A. Pahl, <a href="/A010566/b010566.txt">Table of n, a(n) for n = 1..55</a> (from Iwan Jensen's computations of A002931, using a(n)=4n*A002931(n)) %H A010566 M. E. Fisher and D. S. Gaunt, <a href="http://dx.doi.org/10.1103/PhysRev.133.A224">Ising model and self-avoiding walks on hypercubical lattices and high density expansions</a>, Phys. Rev. 133 (1964) A224-A239. %H A010566 M. E. Fisher and M. F. Sykes, <a href="http://dx.doi.org/10.1103/PhysRev.114.45">Excluded-volume problem and the Ising model of ferromagnetism</a>, Phys. Rev. 114 (1959), 45-58. %H A010566 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 364. %H A010566 A. J. Guttmann and I. G. Enting, <a href="https://doi.org/10.1088/0305-4470/21/3/009">The size and number of rings on the square lattice</a>, J. Phys. A 21 (1988), L165-L172. %H A010566 Brian Hayes, <a href="https://www.americanscientist.org/article/how-to-avoid-yourself">How to avoid yourself</a>, American Scientist 86 (1998) 314-319. %H A010566 B. J. Hiley and M. F. Sykes, <a href="http://dx.doi.org/10.1063/1.1701041">Probability of initial ring closure in the restricted random-walk model of a macromolecule</a>, J. Chem. Phys., 34 (1961), 1531-1537. %H A010566 Iwan Jensen, <a href="https://web.archive.org/web/20151222163324/http://www.ms.unimelb.edu.au/~iwan/saw/SAW_ser.html">Series Expansions for Self-Avoiding Walks</a> %H A010566 G. S. Rushbrooke and J. Eve, <a href="http://dx.doi.org/10.1063/1.1730595">On Noncrossing Lattice Polygons</a>, Journal of Chemical Physics, 31 (1959), 1333-1334. %t A010566 A002931 = Cases[Import["https://oeis.org/A002931/b002931.txt", "Table"], {_, _}][[All, 2]]; a[n_] := 4n A002931[[n]]; %t A010566 a /@ Range[55] (* _Jean-François Alcover_, Jan 11 2020 *) %o A010566 (Python) %o A010566 # _Alex Nisnevich_, Jul 22 2023 %o A010566 def num_continuations(path, dist): %o A010566 (x, y) = path[-1] %o A010566 next = [(x+1, y), (x-1, y), (x, y+1), (x, y-1)] %o A010566 if dist == 1: %o A010566 return (0, 0) in next %o A010566 else: %o A010566 return sum(num_continuations(path + [c], dist - 1) for c in next if c not in path) %o A010566 def A010566(n): %o A010566 return 4 * num_continuations([(0, 0), (1, 0)], 2 * n - 1) if n >= 2 else 0 %Y A010566 Cf. A002931. %K A010566 nonn,nice,walk %O A010566 1,2 %A A010566 _N. J. A. Sloane_