This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010577 #18 Jul 08 2025 01:39:46 %S A010577 1,12,132,1452,15852,173172,1887492,20578452,224138292,2441606532, %T A010577 26583605772,289455960492,3150796704012,34298615880372, %U A010577 373292253262692,4062873240668412,44214072776280252,481167126859845852,5235893033922430692,56975931806991140292,619957835069070600132,6745858105534183489092 %N A010577 Number of n-step self-avoiding walks on 6-d cubic lattice. %H A010577 Hugo Pfoertner, <a href="/A010577/b010577.txt">Table of n, a(n) for n = 0..24</a> [from Clisby link below] %H A010577 N. Clisby, R. Liang and G. Slade <a href="http://dx.doi.org/10.1088/1751-8113/40/36/003">Self-avoiding walk enumeration via the lace expansion</a> J. Phys. A: Math. Theor. vol. 40 (2007) p 10973-11017, Table A8 for n<=24. %H A010577 M. E. Fisher and D. S. Gaunt, <a href="http://dx.doi.org/10.1103/PhysRev.133.A224">Ising model and self-avoiding walks on hypercubical lattices and high density expansions</a>, Phys. Rev. 133 (1964) A224-A239. %Y A010577 Cf. A010576 (on 5-d cubic lattice), A010575 (on 4-d cubic lattice). %K A010577 nonn,walk %O A010577 0,2 %A A010577 _N. J. A. Sloane_ %E A010577 More terms from _R. J. Mathar_, Aug 31 2007 %E A010577 Corrected a(15), _Hugo Pfoertner_, Aug 16 2014