cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010580 High temperature series for spin-1/2 Ising magnetic susceptibility on 6D simple cubic lattice.

This page as a plain text file.
%I A010580 #16 Aug 09 2022 11:00:20
%S A010580 1,12,132,1452,15852,173052,1884972,20532252,223437852,2431526492,
%T A010580 26447593812,287669976492,3128064123732,34013987172972,
%U A010580 369792173040492,4020299656610636,43702216875039660,475060467524653980,5163624600479230260,56125562454502452780,610010748386503122684
%N A010580 High temperature series for spin-1/2 Ising magnetic susceptibility on 6D simple cubic lattice.
%D A010580 S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
%H A010580 P. Butera and M. Pernici, <a href="https://doi.org/10.1103/PhysRevE.86.011139">High-temperature expansions of the higher susceptibilities for the Ising model in general dimension d</a>, Phys. Rev. E 86, 011139 (2012).
%H A010580 Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/ising/ising.html">Lenz-Ising Constants</a> [broken link]
%H A010580 Steven R. Finch, <a href="http://web.archive.org/web/20010207201511/http://www.mathsoft.com:80/asolve/constant/ising/ising.html">Lenz-Ising Constants</a> [From the Wayback Machine]
%H A010580 M. E. Fisher and D. S. Gaunt, <a href="https://doi.org/10.1103/PhysRev.133.A224">Ising model and self-avoiding walks on hypercubical lattices and high density expansions</a>, Phys. Rev. 133 (1964), A224-A239.
%H A010580 Misha Gofman, Joan Adler, Amnon Aharony, A. B. Harris and Dietrich Stauffer, <a href="https://doi.org/10.1007/BF01049970">Series and Monte Carlo study of high-dimensional Ising models</a>, J. Stat. Phys. 71, 1221-1230 (1993).
%Y A010580 Cf. A002906 (2D), A002913 (3D), A010556 (4D), A010579 (5D), A030008 (7D).
%K A010580 nonn
%O A010580 0,2
%A A010580 _N. J. A. Sloane_
%E A010580 Corrections and updates from _Steven Finch_
%E A010580 Terms a(16)-a(20) added using Butera & Pernici's formulas by _Andrey Zabolotskiy_, Aug 09 2022