This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010702 #74 Aug 03 2024 14:58:06 %S A010702 3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4, %T A010702 3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4, %U A010702 3,4,3,4,3,4,3,4,3,4,3,4,3 %N A010702 Period 2: repeat (3,4). %C A010702 Continued fraction expansion of A176102. - _R. J. Mathar_, Mar 08 2012 %C A010702 Also decimal expansion of 34/99. - _Nicolas Bělohoubek_, Nov 12 2021 %H A010702 Matthew House, <a href="/A010702/b010702.txt">Table of n, a(n) for n = 0..10000</a> %H A010702 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1). %F A010702 G.f.: (3+4*x)/(1-x^2). - _Jaume Oliver Lafont_, Mar 20 2009 %F A010702 a(n) = floor((n+1)*7/2) - floor((n)*7/2). - _Hailey R. Olafson_, Jul 23 2014 %F A010702 a(n) = 3 + (n mod 2) = 4 - ((n+1) mod 2). - _Wesley Ivan Hurt_, Jul 24 2014 %F A010702 From _Nicolas Bělohoubek_, Nov 12 2021: (Start) %F A010702 a(n) = 12/a(n-1). See also A010696. %F A010702 a(n) = 7 - a(n-1). See also A010695. (End) %F A010702 a(n) = (7-(-1)^n)/2. - _Aaron J Grech_, Jul 28 2024 %p A010702 A010702:=n->3+(n mod 2): seq(A010702(n), n=0..100); # _Wesley Ivan Hurt_, Jul 24 2014 %t A010702 3 + Mod[Range[0, 100], 2] (* _Wesley Ivan Hurt_, Jul 24 2014 *) %t A010702 PadRight[{}, 100, {3, 4}] (* _Vincenzo Librandi_, Aug 01 2015 *) %o A010702 (PARI) a(n)=3+n%2 \\ _Charles R Greathouse IV_, Dec 21 2011 %o A010702 (Haskell) %o A010702 a010702 = (+ 3) . (`mod` 2) %o A010702 a010702_list = cycle [3,4] -- _Reinhard Zumkeller_, Jul 05 2012 %o A010702 (Magma) [3 + (n mod 2) : n in [0..100]]; // _Wesley Ivan Hurt_, Jul 24 2014 %o A010702 (Magma) &cat[[3,4]: n in [0..50]]; // _Vincenzo Librandi_, Aug 01 2015 %o A010702 (Python) %o A010702 def A010702(n): return 3 + (n & 1) # _Chai Wah Wu_, May 25 2022 %Y A010702 Cf. A047355 (partial sums), A176102. %Y A010702 Cf. A010695, A010696. %K A010702 nonn,easy %O A010702 0,1 %A A010702 _N. J. A. Sloane_