This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010716 #74 Nov 01 2024 12:05:31 %S A010716 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, %T A010716 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, %U A010716 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 %N A010716 Constant sequence: the all 5's sequence. %C A010716 Continued fraction expansion of (5 + sqrt(29))/2. - _Bruno Berselli_, Mar 15 2011 %C A010716 Decimal expansion of 5/9. - _Arkadiusz Wesolowski_, Sep 12 2011 %C A010716 With offset -1, decimal expansion of 1/18. - _Michel Marcus_, Apr 06 2018 %H A010716 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1013">Encyclopedia of Combinatorial Structures 1013</a> %H A010716 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A010716 Jan-Christoph Schlage-Puchta, <a href="http://arxiv.org/abs/1105.1305">Sumsets avoiding squarefree integers</a>, arXiv:1105.1305 [math.NT], 2011. See abstract. %H A010716 Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, <a href="https://ceur-ws.org/Vol-3792/paper19.pdf">Integer sequences from k-iterated line digraphs</a>, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2. %H A010716 <a href="/index/Di#divseq">Index to divisibility sequences</a> %H A010716 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1). %F A010716 G.f.: 5/(1-x). - _Bruno Berselli_, Mar 15 2011 %F A010716 a(n) = 5. - _Arkadiusz Wesolowski_, Sep 12 2011 %F A010716 E.g.f.: 5*e^x. - _Vincenzo Librandi_, Jan 24 2012 %t A010716 Table[5, {81}] (* _Arkadiusz Wesolowski_, Sep 12 2011 *) %o A010716 (PARI) a(n)=5 \\ _Charles R Greathouse IV_, Sep 24 2015 %o A010716 (Scala) List.fill(100)(5) // _Alonso del Arte_, Apr 25 2020 %Y A010716 Cf. A000012, A084962. %K A010716 nonn,easy %O A010716 0,1 %A A010716 _N. J. A. Sloane_