cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010722 Constant sequence: the all 6's sequence.

This page as a plain text file.
%I A010722 #66 Mar 09 2025 05:10:07
%S A010722 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
%T A010722 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
%U A010722 6,6,6,6,6,6,6,6,6,6,6,6,6
%N A010722 Constant sequence: the all 6's sequence.
%C A010722 Continued fraction expansion of 3+sqrt(10). - _Bruno Berselli_, Mar 15 2011
%C A010722 Decimal expansion of Sum_{n >= 0} n/binomial(2*n+1, n) = 2/3. - _Bruno Berselli_, Sep 14 2015
%C A010722 Decimal expansion of 2/3. - _Franklin T. Adams-Watters_, Feb 23 2019
%D A010722 John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 81.
%D A010722 David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 29.
%H A010722 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1014">Encyclopedia of Combinatorial Structures 1014</a>.
%H A010722 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H A010722 <a href="/index/Di#divseq">Index to divisibility sequences</a>.
%H A010722 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).
%F A010722 G.f.: 6/(1-x). - _Bruno Berselli_, Mar 15 2011
%F A010722 E.g.f.: 6*e^x. - _Vincenzo Librandi_, Jan 27 2012
%F A010722 a(n) = floor(1/(-n + csc(1/n))). - _Clark Kimberling_, Mar 10 2020
%o A010722 (PARI) a(n)=6 \\ _Charles R Greathouse IV_, Sep 28 2015
%Y A010722 Cf. A145429: decimal expansion of Sum_{n >= 0} n/binomial(2*n, n).
%Y A010722 Cf. A000012, A007395, A010701, A010709, A010716.
%Y A010722 First differences of A008588.
%K A010722 nonn,easy
%O A010722 0,1
%A A010722 _N. J. A. Sloane_