This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010727 #58 Apr 18 2017 07:03:11 %S A010727 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, %T A010727 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, %U A010727 7,7,7,7,7,7,7,7,7,7,7,7,7 %N A010727 Constant sequence: the all 7's sequence. %C A010727 a(n) = A153466(n) mod 9. - _Paul Curtz_, Dec 27 2008 %C A010727 Continued fraction expansion of A176439. - _Bruno Berselli_, Mar 15 2011 %C A010727 Final digit of 16^(2^n) + 1. That is, the last digit of every Fermat number F(n) is 7, where n >= 2. - _Arkadiusz Wesolowski_, Jul 28 2011 %C A010727 Decimal expansion of 7/9. - _Arkadiusz Wesolowski_, Sep 12 2011 %H A010727 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A010727 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1015">Encyclopedia of Combinatorial Structures 1015</a> %H A010727 Christian Perfect, <a href="http://aperiodical.com/2013/07/integer-sequence-reviews-on-numberphile-or-vice-versa/">Integer sequence reviews on Numberphile (or vice versa)</a>, 2013. %H A010727 <a href="/index/Di#divseq">Index to divisibility sequences</a> %H A010727 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1). %F A010727 G.f.: 7/(1-x). - _Bruno Berselli_, Mar 15 2011 %F A010727 a(n) = 7. - _Arkadiusz Wesolowski_, Sep 12 2011 %F A010727 E.g.f.: 7*e^x. - _Vincenzo Librandi_, Jan 28 2012 %t A010727 ContinuedFraction[(7 + Sqrt@ 53)/2, 105] (* Or *) %t A010727 CoefficientList[ Series[7/(1 - x), {x, 0, 104}], x] (* _Robert G. Wilson v_ *) %t A010727 PadRight[{},90,7] (* or *) Table[7,{90}] (* _Harvey P. Dale_, Jun 05 2013 *) %o A010727 (PARI) a(n)=7 \\ _Charles R Greathouse IV_, Sep 24 2015 %Y A010727 Cf. A000012 (the all 1's sequence), A153466, A176439. %K A010727 nonn,easy %O A010727 0,1 %A A010727 _N. J. A. Sloane_