This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010750 #25 May 07 2017 22:23:55 %S A010750 1,1,1,1,1,1,2,9,38,131,387,1025,2512,5834,13152,29805,71858,197325, %T A010750 635938,2311865,8867078,34201676,129669923,479650565,1731405819, %U A010750 6124746296,21382533684,74413732788,261584276096,943601869926,3547521313455,14045005473985 %N A010750 Shifts 6 places right under inverse binomial transform. %H A010750 Alois P. Heinz, <a href="/A010750/b010750.txt">Table of n, a(n) for n = 0..300</a> %H A010750 M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] %H A010750 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %H A010750 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %p A010750 T:= proc(n, k) option remember; `if`(n<k, `if`(n=0, 1, 0), add(binomial(n-k, j) *T(j, k), j=0..n-k)) end: a:= n-> T(n+6, 6): seq(a(n), n=0..30); # _Alois P. Heinz_, Sep 05 2008 %t A010750 T[n_, k_] := T[n, k] = If[n < k, If[n == 0, 1, 0], Sum[Binomial[n-k, j]*T[j, k], {j, 0, n-k}]]; a[n_] := T[n+6, 6]; Table[a[n], {n, 0, 31}] (* _Jean-François Alcover_, Apr 17 2014, after _Alois P. Heinz_ *) %Y A010750 Column k=6 of A143983. %K A010750 nonn,eigen %O A010750 0,7 %A A010750 _N. J. A. Sloane_, _Jonas Wallgren_