This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010791 #61 Sep 13 2024 11:29:50 %S A010791 1,3,24,360,8640,302400,14515200,914457600,73156608000,7242504192000, %T A010791 869100503040000,124281371934720000,20879270485032960000, %U A010791 4071457744581427200000,912006534786239692800000,232561666370491121664000000,66977759914701443039232000000 %N A010791 a(n) = n!*(n+2)!/2. %C A010791 Also determinant of n X n matrix with m(i,j) = i^2 if i=j, otherwise 1. - _Robert G. Wilson v_, Jan 28 2002 %C A010791 Partial products of positive values of A005563. - _Jonathan Vos Post_, Oct 21 2008 %C A010791 This sequence has been shown to contain infinitely many squares. From the Hong and Liu abstract: Recently Cilleruelo proved that the product Product_{k=1..n} (k^2 + 1) is a square only for n = 3 which confirms a conjecture of Amdeberhan, Medina and Moll. In this paper, we show that the sequence Product_{k=2..n} (k^2 - 1) contains infinitely many squares. Furthermore, we determine all squares in this sequence. We also give a formula for the p-adic valuation of the terms in this sequence. - _Jonathan Vos Post_, Oct 21 2008 %C A010791 Equals (-1)^n * (1, 1, 3, 24, 360, ...) dot (1, -4, 9, -16, 25, ...). E.g., a(4) = (1, 1, 3, 24, 360) dot (1, -4, 9, -16, 25) = 1 - 4 + 27 - 384 + 9000 = 8640. - _Gary W. Adamson_, Apr 21 2009 %H A010791 Vincenzo Librandi, <a href="/A010791/b010791.txt">Table of n, a(n) for n = 0..200</a> %H A010791 Javier Cilleruelo, <a href="http://dx.doi.org/10.1016/j.jnt.2007.11.001">Squares in (1^2+1)...(n^2+1)</a>, Journal of Number Theory 128:8 (2008), pp. 2488-2491. %H A010791 Shaofang Hong and Xingjiang Liu, <a href="http://arxiv.org/abs/0810.3366">Squares in (2^2-1)...(n^2-1) and p-adic valuation</a>, arXiv:0810.3366 [math.NT], 2008-2009. %H A010791 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>. %F A010791 From _Amiram Eldar_, Sep 27 2022: (Start) %F A010791 a(n) = A175430(n+1)/2. %F A010791 Sum_{n>=0} 1/a(n) = 2*BesselI(2,2) = 2*A229020. %F A010791 Sum_{n>=0} (-1)^n/a(n) = 2*BesselJ(2,2). (End) %F A010791 a(n) = 1/([x^n] hypergeom([], [3], x)). - _Peter Luschny_, Sep 13 2024 %p A010791 f := n->n!*(n+2)!/2; %t A010791 Table[n!(n+2)!/2,{n,0,20}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 03 2011 *) %o A010791 (Magma) [Factorial(n)* Factorial(n+2) / 2: n in [0..20]]; // _Vincenzo Librandi_, Jun 11 2013 %o A010791 (PARI) a(n) = n!*(n+2)!/2; \\ _Michel Marcus_, Feb 03 2016 %Y A010791 Cf. A005563, A010792, A010793, A010794, A010795, A175430, A229020. %K A010791 nonn,easy %O A010791 0,2 %A A010791 _N. J. A. Sloane_