This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010796 #68 Feb 21 2025 09:02:56 %S A010796 1,6,72,1440,43200,1814400,101606400,7315660800,658409472000, %T A010796 72425041920000,9560105533440000,1491376463216640000, %U A010796 271430516305428480000,57000408424139980800000,13680098021793595392000000,3720986661927857946624000000 %N A010796 a(n) = n!*(n+1)!/2. %C A010796 Column 2 in triangle A009963. %C A010796 a(n) = A078740(n, 2), first column of (3, 2)-Stirling2 array. %C A010796 Also the number of undirected Hamiltonian paths in the complete bipartite graph K_{n,n+1}. - _Eric W. Weisstein_, Sep 03 2017 %C A010796 Also, the number of undirected Hamiltonian cycles in the complete bipartite graph K_{n+1,n+1}. - _Pontus von Brömssen_, Sep 06 2022 %H A010796 Vincenzo Librandi, <a href="/A010796/b010796.txt">Table of n, a(n) for n = 1..200</a> %H A010796 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a>. %H A010796 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianCycle.html">Hamiltonian Cycle</a>. %H A010796 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianPath.html">Hamiltonian Path</a>. %H A010796 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>. %F A010796 a(n) = 2^(n-1) * A006472(n+1). %F A010796 a(n) = A010790(n)/2. %F A010796 E.g.f.: (hypergeom([1, 2], [], x)-1)/2. %F A010796 a(n) = Product_{k=1..n-1} (k^2+3*k+2). - _Gerry Martens_, May 09 2016 %F A010796 E.g.f.: x*hypergeom([1, 3], [], x). - _Robert Israel_, May 09 2016 %F A010796 From _Amiram Eldar_, Jun 25 2022: (Start) %F A010796 Sum_{n>=1} 1/a(n) = 2*(BesselI(1, 2) - 1). %F A010796 Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(1 - BesselJ(1, 2)). (End) %t A010796 Table[n! (n + 1)! / 2, {n, 1, 20}] (* _Vincenzo Librandi_, Jun 11 2013 *) %t A010796 Times@@@Partition[Range[20]!,2,1]/2 (* _Harvey P. Dale_, Jul 04 2017 *) %o A010796 (Magma) [Factorial(n)* Factorial(n+1) / 2: n in [1..20]]; // _Vincenzo Librandi_, Jun 11 2013 %o A010796 (PARI) for(n=1,30, print1(n!*(n+1)!/2, ", ")) \\ _G. C. Greubel_, Feb 07 2018 %Y A010796 Cf. A006472, A009963, A078740, A010790. %Y A010796 Main diagonal of A291909. %K A010796 nonn,easy %O A010796 1,2 %A A010796 _N. J. A. Sloane_