This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010803 #29 Jul 07 2025 01:03:51 %S A010803 0,1,32768,14348907,1073741824,30517578125,470184984576,4747561509943, %T A010803 35184372088832,205891132094649,1000000000000000,4177248169415651, %U A010803 15407021574586368,51185893014090757,155568095557812224 %N A010803 15th powers: a(n) = n^15. %H A010803 Vincenzo Librandi, <a href="/A010803/b010803.txt">Table of n, a(n) for n = 0..1000</a> %H A010803 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (16, -120, 560, -1820, 4368, -8008, 11440, -12870, 11440, -8008, 4368, -1820, 560, -120, 16, -1). %F A010803 Totally multiplicative with a(p) = p^15 for prime p. Multiplicative with a(p^e) = p^(15e). - _Jaroslav Krizek_, Nov 01 2009 %F A010803 From _Ilya Gutkovskiy_, Feb 27 2017: (Start) %F A010803 Dirichlet g.f.: zeta(s-15). %F A010803 Sum_{n>=1} 1/a(n) = zeta(15) = A013673. (End) %F A010803 Sum_{n>=1} (-1)^(n+1)/a(n) = 16383*zeta(15)/16384. - _Amiram Eldar_, Oct 08 2020 %t A010803 Table[n^15,{n,0,20}] (* _Vladimir Joseph Stephan Orlovsky_, Mar 18 2010 *) %o A010803 (Magma) [n^15: n in [0..15]]; // _Vincenzo Librandi_, Jun 19 2011 %o A010803 (PARI) for(n=0,15,print1(n^15,", ")) \\ _Derek Orr_, Feb 27 2017 %o A010803 (PARI) A010803(n)=n^15 \\ _M. F. Hasler_, Jul 03 2025 %o A010803 (Python) A010803 = lambda n: n**15 # _M. F. Hasler_, Jul 03 2025 %Y A010803 Cf. A013673 (zeta(15)). %Y A010803 Cf. A000290 (squares), A000578 (cubes), A000583 (4th powers), A000584 (5th powers), A001015 (7th powers), A008455 (11th powers). %K A010803 nonn,mult,easy %O A010803 0,3 %A A010803 _N. J. A. Sloane_